A Study on Relation Between Band Gap and Orbital Electronegativities of sp-Bonded Compounds

Chang-Suk Han1,* and Soo-Man Lee2

1Department of Defense Science & Technology, Hoseo University, 165, Sechul-Ri, Baebang-myeon, Asan-si, Chungnam 336-795, Republic of Korea

2Department of Nanobiotronics, Hoseo University, 165, Sechul-Ri, Baebang-myeon, Asan-si, Chungnam 336-795, Republic of Korea

*Corresponding author: Tel: +82 41 5409542; E-mail: hancs@hoseo.edu

Abstract

An empirical relation between band gap and orbital electronegativities, which are based on Zunger’s orbital radii, is determined by a simplified bond orbital model. Bonding parameter for each A-B bond among 35 elements can be constructed using the empirical relation. The bonding parameter can predict compound formation between sp-bonding atoms with about 90 % accuracy. The error of the judgement using the bonding parameter is within about 20 kJ/g-atom of heat of formation for most of the unpredictable compounds.

Keywords

Band gap, Orbital electronegativity, Compound formation, Orbital model.

Reference (18)

1.       W. Marcoin, K. Pasterny and R. Wrzalik, J. Mol. Struct., 743, 85 (2005); doi:10.1016/j.molstruc.2004.12.061.

2.       Z. Zheng, J. Zhao, Y. Sun and S. Zhang, Chem. Phys. Lett., 550, 94 (2012); doi:10.1016/j.cplett.2012.09.017.

3.       S.M. Morton and L. Jensen, J. Chem. Phys., 133, 074103 (2010); doi:10.1063/1.3457365.

4.       D.A. Egger, F. Rissner, G.M. Rangger, O.T. Hofmann, L. Wittwer, G. Heimel and E. Zojer, Phys. Chem. Chem. Phys., 12, 4291 (2010); doi:10.1039/b924238b.

5.       C. Kalyanaraman, D. Lemoine and B. Jackson, Phys. Chem. Chem. Phys., 1, 1351 (1999); doi:10.1039/a808486f.

6.       L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca (1960).

7.       J.C. Phillips, Rev. Mod. Phys., 42, 317 (1970); doi:10.1103/RevModPhys.42.317.

8.       J. Gerkema and A.R. Miedema, Surf. Sci., 124, 351 (1983); doi:10.1016/0039-6028(83)90796-3.

9.       G. Simons and A.N. Bloch, Phys. Rev. B, 7, 2754 (1973); doi:10.1103/PhysRevB.7.2754.

10.   A. Zunger, Phys. Rev. B, 22, 5839 (1980); doi:10.1103/PhysRevB.22.5839.

11.   D.G. Pettifor, J. Phys. C, 19, 285 (1986).

12.   W.A. Harrison, Phys. Rev. B, 8, 4487 (1973); doi:10.1103/PhysRevB.8.4487.

13.   W.A. Harrison and S. Ciraci, Phys. Rev. B, 10, 1516 (1974); doi:10.1103/PhysRevB.10.1516.

14.   J. Zaanen and G.A. Sawatzky, J. Solid State Chem., 88, 8 (1990);
doi:10.1016/0022-4596(90)90202-9.

15.   A. Bert, M. Llunell, R. Dovesi and C.M. Zicovich-Wilson, Phys. Chem. Chem. Phys., 5, 5319 (2003); doi:10.1039/b307731d.

16.   G. Van Hooydonk, Theochem., 138, 361 (1986); doi:10.1016/0166-1280(86)80028-8.

17.   P. Vogl, H.P. Hjalmarson and J.D. Dow, J. Phys. Chem. Solids, 44, 365 (1983); doi:10.1016/0022-3697(83)90064-1.

18.   V.V. Atuchin, J.C. Grivel, A.S. Korotkov and Z. Zhang, J. Solid State Chem., 181, 1285 (2008); doi:10.1016/j.jssc.2008.01.046.

 

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.