Acid-Activated Algerian Montmorillonite as Heterogeneous Catalysts for Cationic Polymerization of Styrene

Mohammed Chakib Baghdadli, Rachid Meghabar* and Mohammed Belbachir

Laboratoire de Chimie des Polymères, Département de Chimie, Faculté des Sciences Exactes et Appliquées, Université d'Oran 1 A. Ben Bella, BP 1524 El M'nouar, 31000 Oran, Algeria

*Corresponding author: E-mail:


In this work, the styrene polymerization catalyzed by maghnite, an Algerian typical montmorillonite sheet silicate clay is reported. As a first step, the physicochemical variation in maghnite by sulfuric acid activation and the catalytic efficiency of maghnite (Mag) and maghnite-H+ (Mag-H) were studied. Acid activated maghnite were characterized by X-ray fluorescence, X-ray diffraction and FTIR. Then, the polymerization of styrene catalyzed by Mag-H was investigated. It was found that the cationic polymerization of styrene is initiated by Mag-H at ambient temperature in bulk. The effect of the amount of Mag-H, the temperature and the solvent was studied. The conversion increased with increase in the temperature and the proportion of catalyst and it was larger in nonpolar solvents. These results indicated the cationic nature of the polymerization. It was suggested that both the Lewis and the Brønsted acid sites are responsible for the catalytic activity. However, acid treatment of maghnite increases the catalytic activity and the polymerization of styrene was initiated mainly by H+.


Catalyst, Cationic polymerization, Clay, Montmorillonite, Styrene.

Reference (34)

1.      P.J. Flory, J. Am. Chem. Soc., 59, 241 (1937); doi:10.1021/ja01281a007.

2.      F.R. Mayo, J. Am. Chem. Soc., 90, 1289 (1968); doi:10.1021/ja01007a032.

3.      D.H. Solomon and M.J. Rosser, J. Appl. Polym. Sci., 9, 1261 (1965); doi:10.1002/app.1965.070090407.

4.      D.H. Solomon and J.D. Swift, J. Appl. Polym. Sci., 11, 2567 (1967); doi:10.1002/app.1967.070111216.

5.      D.H. Solomon, B.C. Loft and J.D. Swift, Clay Miner., 7, 399 (1968); doi:10.1180/claymin.1968.007.4.03.

6.      D.H. Solomon, Clays Clay Miner., 16, 31 (1968); doi:10.1346/CCMN.1968.0160105.

7.      S.A. Hassan, A-R.M. Mousa, M. Abdel-Khalik and A.-A.A. Abdel-Azim, J. Catal., 53, 175 (1978); doi:10.1016/0021-9517(78)90065-9.

8.      J.A. Bittles, A.K. Chaudhuri and S.W. Benson, J. Polym. Sci. A, 2, 3203 (1964); doi:10.1002/pol.1964.100020720.

9.      C.L.Thomas, J.Hickey and G.Stecker, Ind. Eng. Chem., 42, 866 (1950); doi:10.1021/ie50485a033.

10.  H. Kaplan, One-Step Process of Acid Activating Mineral Clays and Alkylating Phenolic Compounds in the Presence of an Alkene Hydrocarbon, U.S. Patent 3,287,422 (1966).

11.  F. Hojabri, J. Appl. Chem. Biotechnol., 21, 87 (1971); doi:10.1002/jctb.5020210307.

12.  M. Belbachir and A. Bensaoula, Composition and Method for Catalysis using Bentonites, U.S. Patent 7,094,823 B2 (2006).

13.  M.W. Noh and D.C. Lee, Polym. Bull., 42, 619 (1999); doi:10.1007/s002890050510.

14.  T.H. Kim, L.W. Jang, D.C. Lee, H.J. Choi and M.S. Jhon, Macromol. Rapid Commun., 23, 191 (2002); doi:10.1002/1521-3927(20020201)23:3<191::AID-MARC191>3.0.CO;2-H.

15.  X. Fu and S. Qutubuddin, Polymer, 42, 807 (2001); doi:10.1016/S0032-3861(00)00385-2.

16.  Y.K. Kim, Y.S. Choi, K.H. Wang and I.J. Chung, Chem. Mater., 14, 4990 (2002); doi:10.1021/cm020324h.

17.  A. Harrane, R. Meghabar and M. Belbachir, Int. J. Mol. Sci., 3, 790 (2002); doi:10.3390/i3070790.

18.  R. Meghabar, A. Megherbi and M. Belbachir, Polymer, 44, 4097 (2003);

19.  A. Moulkheir, A. Harrane and M. Belbachir, J. Appl. Polym. Sci., 109, 1476 (2008); doi:10.1002/app.28285.

20.  P. Wu and C. Ming, Spectrochim. Acta A, 63, 85 (2006); doi:10.1016/j.saa.2005.04.050.

21.  G.E .Christidis, P.W. Scott and A.C. Dunham, Appl. Clay Sci., 12, 329 (1997); doi:10.1016/S0169-1317(97)00017-3.

22.  U. Flessner, D.J. Jones, J. Rozière, J. Zajac, L. Storaro, M. Lenarda, M. Pavan, A. Jiménez-López, E. Rodrıguez-Castellón, M. Trombetta and G. Busca, J. Mol. Catal. Chem., 168, 247 (2001); doi:10.1016/S1381-1169(00)00540-9.

23.  C.R. Theocharis, K.J. s’Jacob and A.C. Gray, J. Chem. Soc., Faraday Trans. I, 84, 1509 (1988); doi:10.1039/f19888401509.

24.  C. Pesquera, F. Gonzàlez, I. Benito, C. Blanco, S. Mendioroz and J. Pajares, J. Mater. Chem., 2, 907 (1992); doi:10.1039/jm9920200907.

25.  C.N. Rhodes and D.R. Brown, J. Chem. Soc., Faraday Trans., 89, 1387 (1993); doi:10.1039/ft9938901387.

26.  C. Breen, F.D. Zahoor, J. Madejová and P. Komadel, J. Phys. Chem. B, 101, 5324 (1997); doi:10.1021/jp963287o.

27.  D.S. Tong, Y.M. Zheng, W.H. Yu, L.M. Wu and C.H. Zhou, Appl. Clay Sci., 100, 123 (2014); doi:10.1016/j.clay.2014.07.018.

28.  J. Madejova and P. Komadel, Clays Clay Miner., 49, 410 (2001); doi:10.1346/CCMN.2001.0490508.

29.  P. Kumar, R.V. Jasra and T.S.G. Bhat, Ind. Eng. Chem. Res., 34, 1440 (1995); doi:10.1021/ie00043a053.

30.  B. Tyagi, C.D. Chudasama and R.V. Jasra, Spectrochim. Acta A, 64, 273 (2006); doi:10.1016/j.saa.2005.07.018.

31.  H. Faghihian and M.H. Mohammadi, Appl. Surf. Sci., 264, 492 (2013); doi:10.1016/j.apsusc.2012.10.050.

32.  M. Haouas, A. Harrane, M. Belbachir and F. Taulelle, J. Polym. Sci., B, Polym. Phys., 45, 3060 (2007); doi:10.1002/polb.21302.

33.  N. Tsubokawa, J. Polym. Sci. Polym. Lett. Ed., 18, 461 (1980); doi:10.1002/pol.1980.130180611.

34.  J.P. Kennedy and R.G. Squires, Polymer, 6, 579 (1965); doi:10.1016/0032-3861(65)90053-4.


   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.