Green Synthesis of Methyl Palmitate as Biodiesel Main Target Compound by Organic Alkalis Based Deep Eutectic Solvents

Y.J. Lee, Y.R. Lee and K.H. Row*

Department of Chemistry and Chemical Engineering, Inha University, Incheon 402-751, Republic of Korea

*Corresponding author: Fax: +82 32 8720959; Tel: +82 32 8607470; E-mail:


The green synthesis of methyl palmitate as a biodiesel main target compound was developed by the esterification of palmitic acid over organic alkali-based deep eutectic solvents. Three organic alkali-based deep eutectic solvents were assessed as catalysts for the synthesis in this study. The optimal deep eutectic solvent was prepared from choline chloride and glycerol (1:5) and the methanol to deep eutectic solvent ratio was 20 % (v:v). The reaction was optimized at a methanol/palmitic acid ratio of 10:1 (methanol 10 mL, palmitic acid 1 mg) at 30 °C for 60 min. Under optimized conditions, good calibration curves were obtained at phenolic acid concentrations, ranging from 10 to 500 μg/mL. The method recovery ranged from 99.2 to 99.8 % and the inter-day and intra-day relative standard deviations were less than 5 %. Under deep eutectic solvent catalysis, the methyl palmitate yield was 92.5 %. Overall, organic alkali-based deep eutectic solvents are expected to find applications in the preparation of biodiesel.


Deep eutectic solvents, Biodiesel, Organic alkalis, Methyl palmitate, Palmitic acid.

Reference (16)

1.       D.Y.C. Leung, X. Wu and M.K.H. Leung, Appl. Energy, 87, 1083 (2010); doi:10.1016/j.apenergy.2009.10.006.

2.       M.B. Dantas, M.M. Conceicao, V.J. Fernandes Jr., N.A. Santos, R. Rosenhaim, A.L.B. Marques, I.M.G. Santos and A.G. Souza, J. Therm. Anal. Calorim., 87, 835 (2007); doi:10.1007/s10973-006-7780-2.

3.       X. Liu, H. He, Y. Wang, S. Zhu and X. Piao, Fuel, 87, 216 (2008); doi:10.1016/j.fuel.2007.04.013.

4.       M.I. Al-Widyan and A.O. Al-Shyoukh, Bioresour. Technol., 85, 253 (2002); doi:10.1016/S0960-8524(02)00135-9.

5.       V.T. Wyatt, M.A. Hess, R.O. Dunn, T.A. Foglia, M.J. Haas and W.N. Marmer, J. Am. Oil Chem. Soc., 82, 585 (2005); doi:10.1007/s11746-005-1113-2.

6.       L.C. Meher, D. Vidya Sagar and S.N. Naik, Renew. Sustain. Energy Rev., 10, 248 (2006); doi:10.1016/j.rser.2004.09.002.

7.       G. Knothe, C.A. Sharp and T.W. Ryan, Energy Fuels, 20, 403 (2006); doi:10.1021/ef0502711.

8.       K. Shahbaz, F.S. Mjalli, M.A. Hashim and I.M. AlNashef, Energy Fuels, 25, 2671 (2011); doi:10.1021/ef2004943.

9.       K. Shahbaz, F.S. Bagh, F.S. Mjalli, I.M. AlNashef and M.A. Hashim, Fluid Phase Equilib., 354, 304 (2013); doi:10.1016/j.fluid.2013.06.050.

10.   A.P. Abbott, D. Boothby, G. Capper, D.L. Davies and R.K. Rasheed, J. Am. Oil Chem. Soc., 126, 9142 (2004); doi:10.1021/ja048266j.

11.   H. Zhao and G.A. Baker, J. Chem. Technol. Biotechnol., 88, 3 (2013); doi:10.1002/jctb.3935.

12.   Z. Maugeri, W. Leitner and P. Domínguez de María, Tetrahedron Lett., 53, 6968 (2012); doi:10.1016/j.tetlet.2012.10.044.

13.   K. Shahbaz, F.S. Mjalli, M.A. Hashim and I.M. AlNashef, Separ. Purif. Tech., 81, 216 (2011); doi:10.1016/j.seppur.2011.07.032.

14.   M. Hayyan, F.S. Mjalli, M.A. Hashim and I.M. AlNashef, Fuel Process. Technol., 91, 116 (2010); doi:10.1016/j.fuproc.2009.09.002.

15.   Y.H. Choi, J. van Spronsen, Y. Dai, M. Verberne, F. Hollmann, I.W.C.E. Arends, G.J. Witkamp and R. Verpoorte, Plant Physiol., 156, 1701 (2011); doi:10.1104/pp.111.178426.

16.   Q. Zhang, K. De Oliveira Vigier, S. Royer and F. Jérôme, Royal Soc. Chem., 41, 7108 (2012); doi:10.1039/c2cs35178a.


   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.