Synthesis of Graphene Titanium Dioxide Composites as Photocatalytic Materials for Degradation of Moderacid Black

Thanh Xuan Nguyen1, Mo Thi Nguyen1, Hung Van Nguyen2 and Hung Van Hoang1,*

1Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy Cau Giay, Hanoi, Vietnam

2Faculty of Physics, Hanoi National University of Education, 136 Xuan Thuy Cau Giay, Hanoi, Vietnam

*Corresponding author: Tel: +84 4 38330842; E-mail:;


Graphene titanium dioxide composites with different ratios of graphene to TiO2 have been successfully synthesized by a facile hydrothermal method using graphite and titanium tetrachloride as precursors. The composites were characterized by scanning electron microscope, Raman and ultraviolet-visible spectroscopies, X-ray diffraction and thermogravimetric analysis. A composite with titanium content of 20 % was revealed to be the most thermally stable in comparison to other composites, with the most uniform distribution of TiO2 on graphene sheets. The photodegradation study and thermogravimetric analysis showed that the composite with 20 % of titanium is a very stable material. After 15 times use, the photodegradation efficiency remained almost constant with the value of 99.38 %.


Graphene, TiO2, Hydrothermal method, Photocatalyst, Moderacid black.

Reference (29)

1.      M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.

2.      U.M. Shahed, A.S. Mofareh and B.I. William, Science, 297, 2243 (2002); doi:10.1126/science.1075035.

3.      Y. Jing, L. Li, Q. Zhang, P. Lu, P. Liu and X. , J. Hazard. Mater., 189, 40 (2011); doi:10.1016/j.jhazmat.2011.01.132.

4.      Y. Zhang, L. Fei, X. Jiang, C. Pan and Y. Wang, J. Am. Ceram. Soc., 94, 4157 (2011); doi:10.1111/j.1551-2916.2011.04905.x.

5.      Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang and Y. Liu, Appl. Mater. Inerfaces, 2, 2915 (2010); doi:10.1021/am100618h.

6.      A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); doi:10.1038/nmat1849.

7.      S. Park and R.S. Ruoff, J. Nature Nanotech., 4, 217 (2009); doi:10.1038/nnano.2009.58.

8.      H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 4, 380 (2010); doi:10.1021/nn901221k.

9.      X.Y. Zhang, H.P. Li, X.L. Cui and Y. Lin, J. Mater. Chem., 20, 2801 (2010); doi:10.1039/b917240h.

10.  X. Liu, L. Pan, T. Lv and Z. Sun, J. Colloid Interf. Sci., 394, 441 (2013); doi:10.1016/j.jcis.2012.11.047.

11.  Y.Y. Liang, H.L. Wang, H.S. Casalongue, Z. Chen and H. Dai, Nano Res., 3, 701 (2010); doi:10.1007/s12274-010-0033-5.

12.  G. Williams, B. Seger and P.V. Kamat, ACS Nano, 2, 1487 (2008); doi:10.1021/nn800251f.

13.  D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, I.A. Aksay and J. Liu, ACS Nano, 3, 907 (2009); doi:10.1021/nn900150y.

14.  X. Lu, H. Dou, S. Yang, L. Hao, L. Zhang, L. Shen, F. Zhang and X. Zhang, Electrochim. Acta, 56, 9224 (2011); doi:10.1016/j.electacta.2011.07.142.

15.  A.V. Murugan, T. Muraliganth and A. Manthiram, Chem. Mater., 21, 5004 (2009); doi:10.1021/cm902413c.

16.  H. Zhao, F. Su, X. Fan, H. Yu, D. Wu and X. Quan, Chin. J. Catal., 33, 777 (2012); doi:10.1016/S1872-2067(11)60374-4.

17.  Y. Zhang, L. Wu, Q. Zeng and J. Zhi, J. Phys. Chem. C, 112, 16457 (2008); doi:10.1021/jp804524y.

18.  K. Thamaphat, P. Limsuwan and B. Ngotawornchai, Kasetsart J. (Nat. Sci.), 42, 357 (2008).

19.  D. Wang, X. Li, J. Chen and X. Tao, Chem. Eng. J., 198-199, 547 (2012); doi:10.1016/j.cej.2012.04.062.

20.  H. Zhao, F. Su, X. Fan, H. Yu, D. Wu and X. Quan, Chin. J. Catal., 33, 777 (2012); doi:10.1016/S1872-2067(11)60374-4.

21.  S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); doi:10.1016/j.carbon.2007.02.034.

22.  M. Shi, J. Shen, H. Ma, Z. Li, X. Lu, N. Li and M. Ye, Colloids Surf. A, 405, 30 (2012); doi:10.1016/j.colsurfa.2012.04.031.

23.  K. Zhang, L.L. Zhang, X.S. Zhao and J. Wu, J. Chem. Mater., 22, 1392 (2010); doi:10.1021/cm902876u.

24.  L.M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos, J.L. Figueiredo, J.L. Faria, P. Falaras and A.M.T. Silva, Appl. Catal. B, 123-124, 241 (2012); doi:10.1016/j.apcatb.2012.04.045.

25.  X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun and C. Sun, Chem. Eng. J., 183, 238 (2012); doi:10.1016/j.cej.2011.12.068.

26.  Y. Zhang, J. Xu, Z. Sun, C. Li and C. Pan, Prog. Nat. Sci. Mater. Inter., 21, 467 (2011); doi:10.1016/S1002-0071(12)60084-7.

27.  H. Gao, W. Chen, J. Yuan, Z. Jiang, G. Hu, W. Shangguan, Y. Sun and J. Su, Int. J. Hydrogen Energy, 38, 13110 (2013); doi:10.1016/j.ijhydene.2013.01.155.

28.  A. Piscopo, D. Robert and J.V. Weber, Appl. Catal. B, 35, 117 (2001);

29.  W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); doi:10.1021/ja01539a017.


   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.