Status of Atmospheric Carbonaceous Matter in Various Locations of India

Yasmeen F. Pervez1,*, Shailendra K. Kushawaha1, S. Nair2 and Shamsh Pervez3

1Department of Chemistry, Chhatrapati Shivaji Institute of Technology, Durg-491 001, India

2Department of Chemistry, Bhilai Institute of Technology, Durg-491 001, India

3School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur-492 010, India

*Corresponding author: E-mail:


This article reviews the sampling locations, collection methodology and analysis of organic carbon (OC) and elemental carbon (EC), OC/EC ratio, total carbon, secondary organic carbon (SOC) from various sampling location methodology for collection and analysis in their respective sizes of particulate matter (PM) in selected cities of India. The carbonaceous aerosols consist of organic carbon (OC) and elemental carbon (EC) and combination of two is known as total carbon (TC). This paper reviewed numerous studies, which were carried out in various hotspot locations (namely residential, industrial, traffic intersections, rural, indoor environment etc.) of selected cities (Delhi, Agra, Kanpur, Pune, Mumbai and Ahmedabad) in India. The annual concentration of PM10 varied from 280.7 to 160 μg/m3 and PM2.5 varied from 145.59 to 88.89 μg/m3, respectively. Carbonaceous analysis result showed that the annual concentration of organic carbon varied from 93 to 12.8 μg/m3 and elemental carbon varied from 27 to 2.1 μg/m3, respectively. OC/EC ratio in India (Delhi, Agra, Kanpur, Pune, Mumbai and Ahmedabad) varied from 3.28 to 17.2. In most of the cities OC/EC ratio exceeded 2, indicating the formation of secondary organic carbon (SOC). Secondary organic carbon is one of the major contributors of organic carbon and its contribution varied from 18 to 61 % in the selected location. The origin of carbonaceous aerosols were mostly from combustion processes.


Particulate matter, Organic carbon, Elemental carbon, Total carbon.

Reference (42)

1.      M.O. Andreae and P.J. Crutzen, Science, 276, 1052 (1997); doi:10.1126/science.276.5315.1052.

2.      N. Rastogi and M.M. Sarin, Atmos. Environ., 43, 3481 (2009); doi:10.1016/j.atmosenv.2009.04.030.

3.      J. Fenger, Atmos. Environ., 43, 13 (2009); doi:10.1016/j.atmosenv.2008.09.061.

4.      S. Yu, P.V. Bhave, R.L. Dennis and R. Mathur, Environ. Sci. Technol., 41, 4690 (2007); doi:10.1021/es061535g.

5.      S. Yu, R. Dennis, P.V. Bhave and B. Eder, Atmos. Environ., 38, 5257 (2004); doi:10.1016/j.atmosenv.2004.02.064.

6.      S. Yu, C.S. Zender and V. Saxena, Atmos. Environ., 35, 3967 (2001); doi:10.1016/S1352-2310(01)00187-X.

7.      F. Yang, L. Huang, F. Duan, W. Zhang, K. He, Y. Ma, J.R. Brook, J. Tan, Q. Zhao and Y. Cheng, Atmos. Chem. Phys., 11, 7893 (2011); doi:10.5194/acp-11-7893-2011.

8.      J.H. Seinfeld and S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, New York (1998).

9.      T. Ancelet, P.K. Davy, W.J. Trompetter, A. Markwitz and D.C. Weatherburn, Atmos. Pollut. Res., 4, 245 (2013); doi:10.5094/APR.2013.026.

10.  R.K. Chakrabarty, S. Pervez, J.C. Chow, J.G. Watson, S. Dewangan, J. Robles and G. Tian, Environ. Sci. Technol. Lett., 1, 44 (2014); doi:10.1021/ez4000669.

11.  W.F. Cooke, C. Liousse, H. Cachier and J. Feichter, J. Geophys. Res., 104(D18), 22137 (1999); doi:10.1029/1999JD900187.

12.  K. Ram, M.M. Sarin and P. Hegde, Atmos. Environ., 42, 6785 (2008); doi:10.1016/j.atmosenv.2008.05.031.

13.  J. Hansen, M. Sato, R. Ruedy, A. Lacis and V. Oinas, Proc. Natl. Acad. Sci. USA, 97, 9875 (2000); doi:10.1073/pnas.170278997.

14.  M.Z. Jacobson, Nature, 409, 695 (2001); doi:10.1038/35055518.

15.  I.H. Rehman, T. Ahmed, P.S. Praveen, A. Kar and V. Ramanathan, Atmos. Chem. Phys., 11, 7289 (2011); doi:10.5194/acp-11-7289-2011.

16.  L. Frazer, Environ. Health Perspect., 110, A470 (2002).

17.  S. Pervez, R. Chakrabarty, S. Dewangan, J.G. Waston, J.C. Chow, J.L. Matwale and Y. Pervez, Aerosol Air Quality Res., 15, 72 (2015); doi:10.4209/aaqr.2014.01.0022.

18.  J.J. Lin and H.-S. Tai, Atmos. Environ., 35, 2627 (2001); doi:10.1016/S1352-2310(00)00444-1.

19.  J.L. Mauderly and J.C. Chow, Inhalation Toxicol., 20, 257 (2008); doi:10.1080/08958370701866008.

20.  S. Tiwari, A.S. Pipal, P.K. Hopke, D.S. Bisht, A.K. Srivastava, S. Tiwari, P.N. Sexana, A.H. Khan and S. Pervez, Environ. Sci. Pollut. Res., 22, 10744 (2015);

21.  J.C. Chow, J.G. Watson, Z. Lu, D.H. Lowenthal, C.A. Frazier, P.A. Solomon, R.H. Thuillier and K. Magliano, Atmos. Environ., 30, 2079 (1996); doi:10.1016/1352-2310(95)00402-5.

22.  J.J. Schauer, M.J. Kleeman, G.R. Cass and B.R.T. Simoneit, Environ. Sci. Technol., 36, 1169 (2002); doi:10.1021/es0108077.

23.  J.J. Schauer, M.J. Kleeman, G.R. Cass and B.R.T. Simoneit, Environ. Sci. Technol., 35, 1716 (2001); doi:10.1021/es001331e.

24.  J.M. Chen, B. Chen, K. Higuchi, J. Liu, D. Chan, D. Worthy, P. Tans and A. Black, Geophys. Res. Lett., 33, n/a (2006); doi:10.1029/2006GL025919.

25.  Z. He, Y.J. Kim, K.O. Ogunjobi, J.E. Kim and S. Ryu, Atmos. Environ., 38, 1795 (2004); doi:10.1016/j.atmosenv.2003.12.023.

26.  R.J. Zhang, J.J. Cao, S.C. Lee, Z.X. Shen and K.F. Ho, J. Environ. Sci. (China), 19, 564 (2007); doi:10.1016/S1001-0742(07)60094-1.

27.  Y. Feng, Y. Chen, H. Guo, G. Zhi, S. Xiong, J. Li, G. Sheng and J. Fu, Atmos. Res., 92, 434 (2009); doi:10.1016/j.atmosres.2009.01.003.

28.  P. Mandal, T. Saud, R. Sarkar, A. Mandal, S.K. Sharma, T.K. Mandal and J.K. Bassin, Environ. Chem. Lett., 12, 225 (2013); doi:10.1007/s10311-013-0438-y.

29.  S.K. Sharma, T.K. Mandal, M. Saxena, Rashmi, A. Sharma, A. Datta and T. Saud, J. Atmos. Sol. Terr. Phys., 113, 10 (2014); doi:10.1016/j.jastp.2014.02.008.

30.  A.S. Pipal, S. Tiwari, P.G. Satsangi, A. Taneja, D.S. Bisht, A.K. Srivastava and M.K. Srivastava, Environ. Sci. Pollut. Res. Int., 21, 8678 (2014); doi:10.1007/s11356-014-2768-0.

31.  O.P. Tripathi, S.G. Jennings, C.D. O’Dowd, L. Coleman, S. Leinert, B. O’Leary, E. Moran, S.J. O’Doherty and T.G. Spain, J. Geophys. Res., 115, D19302 (2010); doi:10.1029/2010JD014040.

32.  M.K. Kumari, A. Satsangi, T. Pachauri, V. Singla and A. Lakhani, Indian J. Radio Space Phys., 39, 218 (2010).

33.  M.K. Kumari, R.K. Meena, A. Satsangi and A. Lakhani, Indian J. Radio Space Phys., 43, 156 (2014).

34.  A. Taneja, S. Tiwari, A.K. Srivastava, D.S. Bisht, R. Jan and A.S. Pipal, Sustain. Environ. Res., 24, 107 (2014).

35.  A.J. Elizabeth, S. Unnikrishnan and R. Kumar, European Aerosol Conference, T150A25 (2009).

36.  A.S. Pipal and P.G. Satsangi, Atmos. Res., 154, 103 (2015); doi:10.1016/j.atmosres.2014.11.007.

37.  J.C. Chow, J.G. Watson, D. Crow, D.H. Lowenthal and T. Merrifield, Aerosol Sci. Technol., 34, 23 (2001); doi:10.1080/02786820119073.

38.  K.K. Fung, J.C. Chow and J.G. Watson, J. Air Waste Manage. Assoc., 52, 1333 (2002); doi:10.1080/10473289.2002.10470867.

39.  K. Ram, M.M. Sarin and S.N. Tripathi, J. Geophy. Res., 115, n/a (2010); doi:10.1029/2010JD014188.

40.  A. Datta, T. Saud, A. Goel, S. Tiwari, S.K. Sharma, M. Saxena and T.K. Mandal, J. Atmos. Chem., 65, 127 (2010); doi:10.1007/s10874-011-9185-2.

41.  I. Salma, X. Chi and W. Maenhaut, Atmos. Environ., 38, 27 (2004); doi:10.1016/j.atmosenv.2003.09.047.

42.  L.M. Castro, C.A. Pio, R.M. Harrison and D.J.T. Smith, Atmos. Environ., 33, 2771 (1999); doi:10.1016/S1352-2310(98)00331-8.


   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.