Solvent Role in Molecular Recognition of Patchouli Extraction Process

F. Adam1,*, A.B. Siti Hana1, S.N. Tajuddin2 and Mashitah M. Yusoff2

1Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, LebuhrayaTun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia

2Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, LebuhrayaTun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia

*Corresponding author: Fax: +60 9 5492889; Tel: +609 549 2824; E-mail: fatmawati@ump.edu.my

Abstract

Patchouli or Pogostemon cablin Benth is an aromatic plant of importance to the fragrant and cosmetic industries. Its secondary metabolites present interesting pharmacological benefits such as antioxidant and antimutagenic properties. This work is an extended study of the published work in ethanol and water solvents using Ewald summation method and mass spectra characterization of patchouli essential oil extracted with three different polar and non-polar solvents. Ewald summation method has reproduced a better radical distribution function (rdf) intensity in the polar ethanol and water solvents using COMPASS force-field. This work concludes that the complex molecular interaction particularly hydrogen bonding play a significant role to affect the solubility of patchoulol solute either in polar or non-polar solvents during the extraction process.

Keywords

Pogostemon cablin Benth, Ewald, Hydrogen bonding.

Reference (26)

1.      T.-C. Lu, J.-C. Liao, T.-H. Huang, Y.-C. Lin, C.-Y. Liu, Y.-J. Chiu and W.-H. Peng, Evid. Based Complem. Altern. Med., Article ID 671741 (2009); doi:10.1093/ecam/nep183.

2.      Y. Yang, K. Kinoshita, K. Koyama, K. Takahashi, T. Tai, Y. Nunoura and K. Watanabe, Phytomedicine, 6, 89 (1999); doi:10.1016/S0944-7113(99)80041-5.

3.      F. Adam, A.B. Siti Hana, M.M. Yusoff and S.N. Tajuddin, J. Chem. Eng. Data, 59, 183 (2014); doi:10.1021/je3013292.

4.      J.T. Reilly, A. Thomas, A.R. Gibson, C.Y. Luebehusen and M.D. Donohue, Ind. Eng. Chem. Res., 52, 14456 (2013); doi:10.1021/ie302174r.

5.      M.C. MacMaster, GC/MS, A Practical User’s Guide, John Wiley & Sons Inc., New Jersey, p. 101 (2008).

6.      J.A. Masucci and G.W. Caldwell, in eds.: R.L. Grob and E.P. Barry, Techniques for Gas Chromatography/Mass Sepctrometry, Modern Practice of Gas Chromatography, John Wiley & Sons Inc., New Jersey, p. 124 (2004).

7.      H. Sun, J. Phys. Chem. B, 102, 7338 (1998); doi:10.1021/jp980939v.

8.      M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, p. 58 (1987). 

9.      C.L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbon, William Andrew Inc., New York, p. 238 (2008).

10.  A.Y. Toukmaji and J.A. Board Jr., Comput. Phys. Commun., 95, 73 (1996); doi:10.1016/0010-4655(96)00016-1.

11.  L. Saiz, J.A. Padro and E. Guàrdia, J. Phys. Chem. B, 101, 78 (1997); doi:10.1021/jp961786j.

12.  P. Mark and L. Nilsson, J. Phys. Chem. B, 106, 9440 (2002); doi:10.1021/jp025965e.

13.  V. Sundaresan, S.P. Singh, A.N. Mishra, A.K. Shasany, M.P. Darokar, A. Kalra and A.A. Naqvi, J. Essent. Oil Res., 21, 220 (2009); doi:10.1080/10412905.2009.9700152.

14.  S.K. Abdul Mudalip, M.R. Abu Bakar, P. Jamal and F. Adam, J. Chem. Eng. Data, 58, 3447 (2013); doi:10.1021/je400714f.

15.  A.G. Carr, R. Mammucari and N.R. Foster, Chem. Eng. J., 172, 1 (2011); doi:10.1016/j.cej.2011.06.007.

16.  M.M. Jiménez-Carmona, J.L. Ubera and M.D. Luque de Castro, J. Chromatogr. A, 855, 625 (1999); doi:10.1016/S0021-9673(99)00703-7.

17.  T. Kondo and C. Sawatari, Polymer, 37, 393 (1996); doi:10.1016/0032-3861(96)82908-9.

18.  S. Kubo and J.F. Kadla, Biomacromolecules, 6, 2815 (2005); doi:10.1021/bm050288q.

19.  L. Fan, R. Jin, Y. Liu, M. An and S. Chen, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 879, 3653 (2011); doi:10.1016/j.jchromb.2011.09.035.

20.  A. Nikiforov, L. Jirovetz, G. Buchbauer and V. Raverdino, Mikrochim. Acta, 95, 193 (1988); doi:10.1007/BF01349751.

21.  A. Yahya and R.M. Yunus, Proceedia Eng., 53, 1 (2013); doi:10.1016/j.proeng.2013.02.001.

22.  N.X. Dung, P.A. Leclercq, T.H. Thai and L.D. Moi, J. Essent. Oil Res., 1, 99 (8989); doi:10.1080/10412905.1989.9697758.

23.  A. Donelian, L.H.C. Carlson, T.J. Lopes and R.A.F. Machado, J. Supercrit. Fluids, 48, 15 (2009); doi:10.1016/j.supflu.2008.09.020.

24.  L.F. Hu, S.P. Li, H. Cao, J.J. Liu, J.L. Gao, F.Q. Yang and Y.T. Wang, J. Pharm. Biomed. Anal., 42, 200 (2006); doi:10.1016/j.jpba.2005.09.015.

25.  J. Wu, X. Lu, W. Tang, H. Kong, S. Zhou and G. Xu, J. Chromatogr. A, 1034, 199 (2004); doi:10.1016/j.chroma.2004.02.028.

26.  G.A. Akowuah and I. Zhari, J. Herbs Spices Med. Plants, 16, 160 (2010); doi:10.1080/10496475.2010.509652.

 

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.