Application of Laser Treatment for Enhanced Dyeability and Comfort Properties of Bleached Cotton/Polyester

Arash Almasian1, Laleh Maleknia2, Mohammad Mirjalili3 and Ghazaleh Chizarifard3,*

1Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran

2Department of Textile Engineering, Islamic Azad University, South Tehran Branch, Iran

3Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran

*Corresponding author: Email:;


In this study, the effect of laser CO2 irradiation on the dyeability of the bleached cotton/polyester fabric was studied. The fabric samples have been treated with laser CO2 irradiation under three different lasers CO2 power before dyeing, hot reactive dye was used for dyeing goods. CIE LAB colorimetric system was used for determination of colour difference between treated and untreated fabrics. The morphology of treated fibers was characterized by scanning electron microscopy. Scanning electron microscopy images indicate changes on the surface of fiber. The colour changes (DE*) of samples are increased with laser CO2 pre-treatment and also those samples with laser CO2 pre-treatment are yellower in colour. The results confirmed that the laser treated fabrics higher light fastness and wet fastness, while tensile strength of fibers was affected adversely by laser irradiation. The laser CO2 irradiation had positive effect on the wet ability of the bleached cotton/polyester fabrics as the bleached cotton/polyester fabrics became more hydrophilic. The laser irradiation also caused more air permeability the bleached cotton/polyester fabrics.


Bleached cotton/Polyester fabric, Laser CO2 Treatment, Changes colour, Morphology study.

Reference (17)

1.      C. Kan, Opt. Laser Technol., 40, 113 (2008); doi:10.1016/j.optlastec.2007.03.005.

2.      C. Kan, Fibers and Polymers, 9, 166 (2008); doi:10.1007/s12221-008-0027-z.

3.      C.W. Kan, C.W.M. Yuen and C.W. Cheng, Coloration Technol., 126, 365 (2010); doi:10.1111/j.1478-4408.2010.00270.x.

4.      D. Knittel and E. Schollmeyer, Polym. Int., 45, 110 (1998);

5.      W. Wong, K. Chan, K.W. Yeung and K.S. Lau, J. Mater. Process. Technol., 132, 114 (2003); doi:10.1016/S0924-0136(02)00412-0.

6.      W.D. Schindler and P.J. Hauser, Chemical Finishing of Textiles, Woodhead Publishing (2004).

7.      Y.L. Chow, C.K. Chan and C.W. Kan, Fibers and Polymers, 12, 275 (2011);

8.      R. Hagemann, C. Noelke, S. Kaierle and V. Wesling, Physics Procedia, 39, 302 (2012); doi:10.1016/j.phpro.2012.10.042.

9.      A. Horn, C.-C. Kalmbach, J.G. Moreno, V. Schütz, U. Stute and L. Overmeyer, Physics Procedia, 39, 709 (2012); doi:10.1016/j.phpro.2012.10.092.

10.  U. Klunboot, K. Arayathanitkul, R. Chitaree and N. Emarat, Procedia Eng., 32, 722 (2012); doi:10.1016/j.proeng.2012.02.003.

11.  A. Toossi, M. Daneshmand and D. Sameoto, J. Micromech. Microeng., 23, 047001 (2013); doi:10.1088/0960-1317/23/4/047001.

12.  Y.I. Kuklev and G.A. Machulka, Soviet J. Quantum Electronics, 1, 627 (1972); doi:10.1070/QE1972v001n06ABEH003301.

13.  S. Nourbakhsh and A. Ashjaran, Materials, 5, 1247 (2012); doi:10.3390/ma5071247.

14.  L. Shaohua, Z. Xiang, T. Tianmin, X. Zhiqi and L. Qihong, Coloration Technol., 119, 19 (2003); doi:10.1111/j.1478-4408.2003.tb00146.x.

15.  M. Stepankova, J. Wiener and K. Rusinová, Cellulose, 18, 469 (2011);

16.  G. Yuan, S. Jiang, E. Newton, J. Fan and W. Au, J. Textil. Inst., 103, 48 (2012); doi:10.1080/00405000.2010.542311.

17.  M. Montazer, S.J. Taheri and T. Harifi, J. Appl. Polym. Sci., 124, 342 (2012); doi:10.1002/app.34930.


   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.