Synthesis, Biological Activity and Computational Study of Some New Unsymmetrical Organotellurium Compounds Derived from 2-Amino-5-carboxyphenyl Mercury(II) Chloride

Rafid H. Al-Asadi1,*, Wasfi A. Al-Masoudi2 and Khawla S. Abdual-Rassol3

1Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq

2Department of Physiology and Chemistry, College of Veterinary, University of Basrah, Basrah, Iraq

3Department of Pharmaceutical Chemistry, College of Pharmacy, University of Basrah, Basrah, Iraq

*Corresponding author: Tel: +9647712549614; E-mail:


The reaction of 2-amino-5-carboxyphenyl mercury(II) chloride under argon atmosphere with tellurium tetrabromide gave 2-amino-5-carboxyphenyl tellurium(VI) tribromide (1) in good yield. Reaction of 1 with 4-hydroxyphenyl mercury(II) chloride under argon atmosphere gave 4-hydroxyphenyl-2-amino-5-carboxyphenyl tellurium(VI) dibromide (2). Reduction of compound 2 by hydrazine hydrate gave new unsymmetrical compound 4-hydroxyphenyl-2-amino-5-carboxyphenyl telluride (3). The synthesized compounds were characterized by elemental analysis (CHN), FT-IR, 1H NMR, 13C NMR and mass spectra. in vitro antitumor activity of compounds was tested against two types of human tumor cells (Prostate cells Pc-3 and Bladder cells T24), compound 1 has higher activity than other compounds. in vitro antioxidant activity of synthesized compounds was tested by using DPPH method, all compound showed the antioxidant activity. The three molecules 1–3 were modeled and optimized by using density functional theory, DFT/B3LYP method and LANL2DZ as a basis set. Calculated descriptor, the HOMO, LUMO energy gap was used to interpret the biological activity of the compounds. The results showed that compound 1 has higher biological activity than compounds 2 and 3.


Organotellurium, Antitumor activity, Antioxidant activity, DFT, HOMO and LUMO, Gaussian-09.

Reference (35)


  1. A. Osuka, Y. Mori, H. Shimizu and H. Suzuki, Tetrahedron Lett., 24, 2599 (1983); doi:10.1016/S0040-4039(00)81992-9.
  2. C.W. Nogueira, G. Zeni and J.B.T. Rocha, Chem. Rev., 104, 6255 (2004); doi:10.1021/cr0406559.
  3. E.R.T. Tiekink, Dalton Trans., 41, 6390 (2012); doi:10.1039/c2dt12225a.
  4. D. Sredni-Kenigsbuch, M. Shohat, B. Shohat, D. Ben-Amitai, C.C. Chan and M. David, J. Dermatol. Sci., 50, 232 (2008); doi:10.1016/j.jdermsci.2007.12.007.
  5. L. Engman, Acc. Chem. Res., 18, 274 (1985); doi:10.1021/ar00117a003.
  6. R.L. Cunha, I.E. Gouvea and L. Juliano, Acad. Bras. Sci., 81, 393 (2009); doi:10.1590/S0001-37652009000300006.
  7. R.L.O.R. Cunha, M.E. Urano, J.R. Chagas, P.C. Almeida, C. Bincoletto, I.L.S. Tersariol and J.V. Comasseto, Bioorg. Med. Chem. Lett., 15, 755 (2005); doi:10.1016/j.bmcl.2004.11.012.
  8. N.M. Giles, S. Kumari, R.A. Stamm, S. Patel and G.I. Giles, Anal. Biochem., 429, 103 (2012); doi:10.1016/j.ab.2012.07.013.
  9. E. Wieslander, L. Engman, E. Svensjö, M. Erlansson, U. Johansson, M. Linden, C.-M. Andersson and R. Brattsand, Biochem. Pharmacol., 55, 573 (1998); doi:10.1016/S0006-2952(97)00517-0.
  10. N. Tiwari, A. Gheldof, M. Tatari and G. Christofori, Semin. Cancer Biol., 22, 194 (2012); doi:10.1016/j.semcancer.2012.02.013.
  11. Vazquez-Tato, A. Mena-Menendez, X. Feas and J.A. Seijas, Int. J. Mol. Sci., 15, 3287 (2014); doi:10.3390/ijms15023287.
  12. P. Garberg, L. Engman, V. Tolmachev, H. Lundqvist, R.G. Gerdes and I.A. Cotgreave, Int. J. Biochem. Cell Biol., 31, 291 (1999); doi:10.1016/S1357-2725(98)00113-7.
  13. L. Engman, T. Kanda, A. Gallegos, R. Williem and G. Powis, Anticancer Drugs, 15, 323 (2000).
  14. K.A. Leonard, M.I. Nelen, T.P. Simard, S.R. Davies, S.O. Gollnick, A.R. Oseroff, S.L. Gibson, R. Hilf, L.B. Chen and M.R. Detty, J. Med. Chem., 42, 3953 (1999); doi:10.1021/jm990245q.
  15. L.G. Makarova and H.M. Nesmeyanov, in eds.: A.N. Nesmyanov and K.A. Kocheshakov, The Organic Chemistry of Mercury Compounds, In: Method of Elementary of Organic Chemistry, edn 1, vol. 4, Northland Publishing Company, Amsterdam (1967).
  16. A. Rasul, M. Khan, B. Yu, T. Ma and H. Yang, Asian Pac. J. Cancer Prev., 12, 1219 (2011).
  17. F.O. Neamah, M.Sc. Thesis, Synthesis and Study of Some Curcuminoids and their Nano Particles, University of Basrah, Iraq (2013).
  18. A.D. Becke, J. Chem. Phys., 107, 8554 (1997); doi:10.1063/1.475007.
  19. P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 270 (1985); doi:10.1063/1.448799.
  20. A.Z. Al-Rubaie, W.A. Al-Masoudi, S.A. Al-Jadaan, A.F. Jalbout and A.J. Hameed, Heteroatom Chem., 19, 307 (2008); doi:10.1002/hc.20437.
  21. M.Y. Al-Luaibi, Ph.D. Thesis, Some New Organotellurium Compounds of Chalcones, Ferrocenyl Chalcones and Tetralene, University of Basrah, Iraq (2014).
  22. M.V. Musalova, V.A. Potapov and S.V. Amosova, Molecules, 17, 5770 (2012); doi:10.3390/molecules17055770.
  23. M. Ismail, M. Ibrar, Z. Iqbal, J. Hussain, H. Hussain, M. Ahmed, A. Ejaz and M.I. Choudhary, Rec. Nat. Prod., 3, 193 (2009).
  24. V. Bondet, W. Brand-Williams and C. Berset, LWT-Food Sci. Technol., 30, 609 (1997); doi:10.1006/fstl.1997.0240.
  25. P. Rajesh and J.P. Natvar, Educ. Res., 1, 52 (2011).
  26. P. Molyneux, Songklanakarin J. Sci. Technol., 26, 211 (2004).
  27. W.M. Davis and J.D. Goddard, Can. J. Chem., 74, 810 (1996); doi:10.1139/v96-089.
  28. V.I. Minkin and R.M. Minyaev, Mendeleev Commun., 10, 171 (2000); doi:10.1070/MC2000v010n05ABEH001349.
  29. R.H. Al-Asadi, Ph.D. Thesis, Synthesis, Biological Activity and Theoretical Study of Some New Organotellurium Compounds, University of Basrah, Iraq (2014).
  30. G. Llabres, O. Dideberg and L. Dupont, Acta Crystallogr. B, 28, 2438 (1972); doi:10.1107/S0567740872006259.
  31. G.A. Casagrande, C. Raminelli, E.S. Lang and S.S. Lemos, Inorg. Chim. Acta, 365, 492 (2011); doi:10.1016/j.ica.2010.09.053.
  32. M.R. Detly, The Chemistry of Hetrocyclic Compounds, John Wiley & Sons, Inc. (1994).
  33. A. Panda, S. Panda, K. Srivastava and H.B. Singh, Inorg. Chim. Acta, 372, 17 (2011); doi:10.1016/j.ica.2011.02.031.
  34. A.K. Chauhan, P. Singh, R.C. Srivastava, R. Butcher and A. Duthie, Inorg. Chim. Acta, 376, 80 (2011); doi:10.1016/j.ica.2011.05.039.
  35. Z. Zhou and R.G. Parr, J. Am. Chem. Soc., 112, 5720 (1990); doi:10.1021/ja00171a007.
   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.