Treatment and Utilization of Industrial Tofu Waste in Indonesia

M. Faisal1,*, Asri Gani1, Farid Mulana1 and H. Daimon2

1Department of Chemical Engineering, Syiah Kuala University, Jl. Syech A. Rauf, Darussalam, Banda Aceh 23111, Aceh, Indonesia

2Department of Environmental and Life Science, Toyohashi University of Technology, Tempakucho, Toyohashi 441-8580, Aichi, Japan

*Corresponding author: Fax: +62 651 52222; Tel: +62 651 7412301; E-mail: mfaisal@unsyiah.ac.id

Abstract

Tofu is a popular food for the people because it contains good and healthy nutrition. Furthermore, it is low-cost for many people. The tofu processing industry, which usually is done by the small industries, can be found in almost every city in Indonesia. As a result of the large number of the small tofu industries, the waste gives a lot of impacts towards the environment. The great amount of water used for the tofu processing results in the great amount of the wastewater. The waste from the tofu processing usually has a high amount of organic substances; the BOD level is around 6000-8000 mg/L, the COD is around 7.500-14.000 mg/L. If all wastes are disposed without any treatments at all, this will surely result in polluting the surrounding environment. This article aims to discuss about the treatment process of the tofu waste in Indonesia and some other alternative treatment systems from previous researches. In general, small tofu industries do nothing about their wastes. It is because the price that they need to pay for the waste treatment is considerably high. On the other hand, some bigger tofu industries are usually treating the waste of their tofu processing with the anaerobic system with the treatment efficiency up to 50-70 %. Even though the waste has been treated, the organic substances in the waste (BOD and COD) released to the water still has a considerably high level of substances, above 500 mg/L. Therefore, further treatments are needed so that the organic content in the waste effluent meets the wastewater quality standard. Several researches shows that the liquid waste from the tofu industries can be treated by using the anaerobic fix domedigester, fixed bed anaerobic, anaerobic baffle reactor, thermophilic anaerobic stirred tank reactor, up flow anaerobic sludge blanket, up flow anaerobic filter process, anaerobic fluidized bed reactor and several others. All of those anaerobic processes produce methane gas which can be used as a source of energy. Some researchers have also successfully utilized the liquid waste of the tofu industries as the source of hydrogen gas, as well as the media lactic acid production. On the other hand, the solid waste (okara) can be used as snacks, fertilizers and feed for livestock. Okara can also be used as the basic ingredients of isoflavones.

Keywords

Tofu waste, Okara, Anaerobic digestion, Methane, Hydrogen.

Reference (32)

1.      N. Sintawardani, Socio-Economic Problems on Reducing the Wastewater Pollution from Tofu Processing in the Cibuntu Area, Indonesia, Research Center for Physics Indonesian Institute of Science (2011).

2.      P. Nurhassan and N. Pramudyanto, Utilization of Tofu Wastewater, Yayasan Bina Karya Lestari (1991).

3.      N. Marlina and S. Askar, Chemical Composition of Some Agricultural Wastes, Animal Research Center, Bogor (2004).

4.      A. Herlambang, Waste Treatment Technology for Tofu Industrial Waste, BPPT, Indonesia (2002).

5.      M. Faisal, I. Machdar, F. Mulana and H. Daimon, Asian J. Chem., 26, 6601 (2014); doi:10.14233/ajchem.2014.16728.

6.      F. Belén, J. Sánchez, E. Hernández, J.M. Auleda and M. Raventós, J. Food Eng., 110, 364 (2012); doi:10.1016/j.jfoodeng.2011.12.036.

7.      A.S. Pablo and R.W. Jorge, Información Tecnológica, 20, 65 (2009).

8.      Y. Sudiyani, A. Syarifah, A. Yulia and A. Indri Badria, International Conference on Chemical Sciences (ICCS-2007), ANL Rep., p. 47 (2007).

9.      A. Darmayanti, J. Hermana and A. Masduqi, Purifikasi, 5, 151 (2004).

10.  I. Mateos-Aparicio, C. Mateos-Peinado and P. Ruperes, Innov. Food Sci. Emerg. Technol., 11, 445 (2010); doi:10.1016/j.ifset.2010.02.003.

11.  Y.A. Suranto and D. Sutoyo, J. Bioteknol., 5, 51 (2008).

12.  C.A.L. Chernicaro, Biological Wastewater Treatment Series: Anaerobic Reactors, Federal University of Minas Gerais, Brazil (2007).

13.  M. Pirsaheb, M. Rostamifar, A.M. Mansouri, A.A.L. Zinatizadeh and K. Sharafi, J. Taiwan Inst. Chem. Eng., 47, 137 (2014); doi:10.1016/j.jtice.2014.09.029.

14.  A. Ahamed, C.-L. Chen, R. Rajagopal, D. Wu, Y. Mao, I.J.R. Ho, J.W. Lim and J.-Y. Wang, Bioresour. Technol., 182, 239 (2015); doi:10.1016/j.biortech.2015.01.117.

15.  L. Jankowiak, O. Trifunovic, R.M. Boom and A.J. van der Goot, J. Food Eng., 124, 166 (2014); doi:10.1016/j.jfoodeng.2013.10.011.

16.  K. Fibria, Ph.D. Thesis, Technical Study of Utilization of Solid and Liquid Wastes of Tofu Industries: Study Cases at Tofu Industry of Tandang Semarang, Sederhana Kendal and Gagak Sipat Boyolali, Diponegoro University, Indonesia (2007)..

17.  S.N. Idaman, I. Haryanto, R. Nugro and A. Herlambang, Treatment of Tofu Waste by Using Biofilter Anaerob and Aerob, BPPT, Indonesia (2010).

18.  C.H. Lay, B. Sen, S.C. Huang, C.C. Chen and C.Y. Lin, Renew. Energy, 58, 60 (2013); doi:10.1016/j.renene.2013.03.011.

19.  A. Petersson and A. Wellinger, IEA Bioenergy, 12 (2009).

20.  R. Lems and E. Dirkse, Making Pressurized Water Scrubbing the Ultimate Biogas Upgrading Technology with the DMT TS-PWS System, DMT Environmental Technology, Joure, Netherlands (2009).

21.  R. Baciocchi, A. Corti, G. Costa, L. Lombardi and D. Zingaretti, Energy Procedia, 4, 4985 (2011); doi:10.1016/j.egypro.2011.02.469.

22.  K. Starr, X. Gabarrell, G. Villalba, L. Talens Peiro and L. Lombardi, Biomass Bioenergy, 62, 8 (2014); doi:10.1016/j.biombioe.2014.01.023.

23.  S. Sung, D.A. Bazylinski and L. Raskin, US DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program-2003 Annual Merit Review Meeting, May (2003).

24.  S.K. Han and H.S. Shin, Int. J. Hydrogen Energy, 29, 569 (2004); doi:10.1016/j.ijhydene.2003.09.001.

25.  I.K. Kapdan and F. Kargi, Enzyme Microb. Technol., 38, 569 (2006); doi:10.1016/j.enzmictec.2005.09.015.

26.  K.W. Jung, D.-H. Kim and H.-S. Shin, Bioresour. Technol., 102, 2745 (2011); doi:10.1016/j.biortech.2010.11.042.

27.  Y.T. Fan, G.S. Zhang, X.Y. Guo, Y. Xing and M.H. Fan, Biomass Bioenergy, 30, 493 (2006); doi:10.1016/j.biombioe.2005.10.009.

28.  J.J. Lay, Biotechnol. Bioeng., 68, 269 (2000); doi:10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T.

29.  O. Mizuno and T. Ohara, Water Sci. Technol., 42, 345 (2000).

30.  D. An, Q. Li, X.Q. Wang, H. Yang and L. Guo, Int. J. Hydrogen Energy, 39, 19928 (2014); doi:10.1016/j.ijhydene.2014.10.014.

31.  A. Avci, N.K. Kilic, G. Donmez and S. Donmez, Environ. Technol., 35, 278 (2014); doi:10.1080/09593330.2013.826251.

32.  G.L. Cao, X.F. Xia, L. Zhao, Z.Y. Wang, X. Li and Q. Yang, Int. J. Hydrogen Energy, 38, 15653 (2013); doi:10.1016/j.ijhydene.2013.04.068.

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.