Continuous Production of Barium Titanate Nanopowder by Hydrothermal Synthesis

Hui Xu and Min Zeng*

School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, P.R. China

*Corresponding author: E-mail: zengmin@swust.edu.cn

Abstract

Continuous production of barium titanate fine particles were performed by hydrothermal synthesis process using a green reaction system. The mechanism of particle formation and growth and the feasibility of continuous production of barium titanate particles were also discussed. The separation solution had been reclaimed and recycled as a base solution, after the hydrothermal reaction in this study. This recycled process has been studied at least 9 cycles. The effect of the mineralizer and Ti-precursor material on particle size and its morphology was investigated.

Keywords

Hydrothermal synthesis, Barium titanate, Ammonia, Poly(ethylene glycol).

Reference (17)

1.      C. Pithan, D. Hennings and R. Waser, Int. J. Appl. Ceram. Technol., 2, 1 (2005); doi:10.1111/j.1744-7402.2005.02008.x.

2.      M. Teresa Buscaglia, C. Harnagea, M. Dapiaggi, V. Buscaglia, A. Pignolet and P. Nanni, Chem. Mater., 21, 5058 (2009); doi:10.1021/cm9015047.

3.      S.G. Kwon, B.H. Park, K. Choi, E.-S. Choi, S. Nam, J.-W. Kim and J.-H. Kim, J. Eur. Ceram. Soc., 26, 1401 (2006); doi:10.1016/j.jeurceramsoc.2005.02.003.

4.      S. Su, R. Zuo, D. Lv and J. Fu, Powder Technol., 217, 11 (2012); doi:10.1016/j.powtec.2011.09.045.

5.      J.Q. Qi, L. Sun, Y. Wang, W.P. Chen, P. Du, Y.G. Xu, L.T. Li, C.W. Nan and H.L.W. Chan, Adv. Powder Technol., 22, 401 (2011); doi:10.1016/j.apt.2010.06.007.

6.      S.K. Tripathy, T. Sahoo, M. Mohapatra, S. Anand and R.P. Das, Mater. Lett., 59, 3543 (2005); doi:10.1016/j.matlet.2005.06.024.

7.      A. Testino, V. Buscaglia, M.T. Buscaglia, M. Viviani and P. Nanni, Chem. Mater., 17, 5346 (2005); doi:10.1021/cm051119f.

8.      V. Swaminathan, S.S. Pramana, T.J. White, L. Chen, R. Chukka and R.V. Ramanujan, ACS Appl. Mater. Interfaces, 2, 3037 (2010); doi:10.1021/am1004865.

9.      M. Zeng, N. Uekawa, T. Kojima and K. Kakegawa, J. Mater. Res., 22, 2631 (2007); doi:10.1557/jmr.2007.0337.

10.  X.Y. Chen, M.H. Qiao, S.H. Xie, Fan, Zhou and He, J. Am. Chem. Soc., 129, 13305 (2007); doi:10.1021/ja074834u.

11.  V. Vinothini, P. Singh and M. Balasubramanian, Ceram. Int., 32, 99 (2006); doi:10.1016/j.ceramint.2004.12.012.

12.  M. Zeng, Appl. Surf. Sci., 257, 6636 (2011); doi:10.1016/j.apsusc.2011.02.090.

13.  J.O. Eckert, C.C. Hung-Houston, B.L. Gersten, M.M. Lencka and R.E. Riman, J. Am. Ceram. Soc., 79, 2929 (1996); doi:10.1111/j.1151-2916.1996.tb08728.x.

14.  J. Moon, E. Suvaci, A. Morrone, S.A. Costantino and J.H. Adair, J. Eur. Ceram. Soc., 23, 2153 (2003); doi:10.1016/S0955-2219(03)00016-5.

15.  B. Sahoo and P.K. Panda, Ceram. Int., 38, 5189 (2012); doi:10.1016/j.ceramint.2012.03.025.

16.  M.M. Vijatović Petrović, J.D. Bobić, A.M. Radojković, J. Banys and B.D. Stojanović, Ceram. Int., 38, 5347 (2012); doi:10.1016/j.ceramint.2012.03.041.

17. N. Uekawa, M. Endo, K. Kakegawa and Y. Sasaki, Phys. Chem. Chem. Phys., 2, 5485 (2000);  doi:10.1039/b003611k.

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.