Synthesis of 1,5-Benzodiazepine Derivatives Using p-Toluenesulfonic Acid as Catalyst

Shasha Wang, Lijuan Hu, Suyan Cheng and Lanzhi Wang*

College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P.R. China

*Corresponding author: E-mail: wanglanzhi@126.com

Abstract

A series of substituted ethyl 4-oxo-4-phenylbut-2-enoates were prepared and reacted with substituted o-phenylenediamine, undergone Michael addition reactions and cyclodehydration to provide novel 4-phenyl-2,3-dihydro-1,5-benzodiazepine-2- carboxylate derivatives with excellent yields. The synthetic protocol fulfilled many green-chemical requirements by using simple catalyst p-toluenesulfonic acid as activator and ethanol as solvent at room temperature.

Keywords

Michael addition, 1,5-Benzodiazepine derivatives, p-Toluenesulfonic acid.

Reference (19)

1.      J.K. Landquist, eds.: A.R. Katritzky and C.W. Rees, Comprehensive Heterocyclic Chemistry, Pergamon, Oxford, Vol. 1, pp. 166-170 (1984).

2.      H. Schutz, Benzodiazepines. Springer, Heidelberg (1982).

3.      M. Di Braccio, G. Grossi, G. Roma, L. Vargiu, M. Mura and M.E. Marongiu, Eur. J. Med. Chem., 36, 935 (2001); doi:10.1016/S0223-5234(01)01283-1.

4.      G. Semple, H. Ryder, D.A. Kendrick, M. Szelke, M. Ohta, M. Satoh, A. Nishida, S. Akuzawa and K. Miyata, Bioorg. Med. Chem. Lett., 6, 55 (1996); doi:10.1016/0960-894X(95)00557-A.

5.      T. Hussenether, H. Hübner, P. Gmeiner and R. Troschütz, Bioorg. Med. Chem. Lett., 12, 2625 (2004); doi:10.1016/j.bmc.2004.03.023.

6.      (a) J. Knabe, H.P. Büch and S. Bender, Arch. Pharm., 328, 59 (1995); doi:10.1002/ardp.19953280111; (b) R.N. Brogden, R.C. Heel, T.M. Speight and G.S. Avery, Drugs, 20, 161 (1980); doi:10.2165/00003495-198020030-00001.

7.      (a) K.S. Atwal, J.L. Bergey, A. Hedberg and S. Moreland, J. Med. Chem., 30, 635 (1987); doi:10.1021/jm00387a009; (b) Z. Khabnadideh, Z. Rezaei, A. Khalafi-Nezhad, R. Bahrinajafi, R. Mohamadi and A.A. Farrokhroz, Bioorg. Med. Chem. Lett., 13, 2863 (2003); doi:10.1016/S0960-894X(03)00591-2.

8.      M. Di Braccio, G. Grossi, G. Roma, L. Vargiu, M. Mura and M.E. Marongiu, Eur. J. Med. Chem., 36, 935 (2001); doi:10.1016/S0223-5234(01)01283-1.

9.      A. Chimirri, S. Grasso, R. Ottanà, G. Romeo and M. Zappalà, J. Heterocycl. Chem., 27, 371 (1990); doi:10.1002/jhet.5570270250.

10.  X.Q. Pan, J.P. Zou, Z. Huang and W. Zhang, Tetrahedron Lett., 49, 5302 (2008); doi:10.1016/j.tetlet.2008.06.082.

11.  J.A.L. Herbert and H.J. Suschitzky, Chem. Soc. Perkin Trans. I, 2657 (1974); doi:10.1039/p19740002657.

12.  R. Contreras, H. R. Morales and A. Bulbarela, Heterocycles, 24, 135 (1986); doi:10.3987/R-1986-01-0135.

13.  M.S. Balakrishna and B. Kaboudin, Tetrahedron Lett., 42, 1127 (2001); doi:10.1016/S0040-4039(00)02168-7.

14.  B. Kaboudin and K. Navaee, Heterocycles, 55, 1443 (2001); doi:10.3987/COM-01-9253.

15.  M. Pozarentzi, J. Stephanidou-Stephanatou and C.A. Tsoleridis, Tetrahedron Lett., 43, 1755 (2002); doi:10.1016/S0040-4039(02)00115-6.

16.  M. Curini, F. Epifano, M.C. Marcotullio and O. Rosati, Tetrahedron Lett., 42, 3193 (2001); doi:10.1016/S0040-4039(01)00413-0.

17.  L.F. Xiao, C.G. Xia and J. Chen, Tetrahedron Lett., 48, 7218 (2007); doi:10.1016/j.tetlet.2007.07.171.

18.  T. Li, Y. Souma and Q. Xu, Catal. Today, 111, 288 (2006); doi:10.1016/j.cattod.2005.10.038.

19. L.Z. Wang, Z.x. Hua and S.S. Wang, Chinese J. Org. (In press).

 

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.