Ultrasonic Assisted Flocculation of Azophloxine Using Polyaluminum Chloride

Wenjie Zhang1,*, Ling Du1 and Hongbo He2,*

1School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, P.R. China

2State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, P.R. China

*Corresponding authors: Tel: +86 24 24680345; wjzhang@aliyun.com; hehongbo@iae.ac.cn

Abstract

A combination of flocculation with polyaluminum chloride and ultrasonic treatment was explored in decoloration of azophloxine. The solely using of ultrasonic treatment cannot decolorize the dye efficiently. The decoloration efficiency reaches the maximum value of 72.4 % at polyaluminum chloride amount of 12 mg/L when using polyaluminum chloride alone. Twenty minutes of flocculation is considered to be the optimal condition. Ultrasonic treating time shows very small influence on azophloxine flocculation by polyaluminum chloride. With the variation of ultrasonic power between 40 and 90 W, decoloration of the dye increases firstly and then decreases. The maximum decoloration rate is obtained using ultrasonic power of 50 W, at which 79.6 % of the initial azophloxine is decolorized after 0.5 h. It is interesting that decoloration rate increases with increasing initial azophloxine concentration.

Keywords

Ultrasonic, Flocculation, Azophloxine, Polyaluminum chloride.

Reference (9)

1.      S.A. Dastgheib, T. Karanfil and W. Cheng, Carbon, 42, 547 (2004); doi:10.1016/j.carbon.2003.12.062.

2.      W. Buchanan, F. Roddick and N. Porter, Water Res., 42, 3335 (2008); doi:10.1016/j.watres.2008.04.014.

3.      S.W. Krasner, P. Westerhoff, B.Y. Chen, B.E. Rittmann and G. Amy, Environ. Sci. Technol., 43, 8320 (2009); doi:10.1021/es901611m.

4.      T. Saitoh, M. Yamaguchi and M. Hiraide, Water Res., 45, 1879 (2011); doi:10.1016/j.watres.2010.12.009.

5.      J. Chen, S. Truesdail, F. Lu, G. Zhan, C. Belvin, B. Koopman, S. Farrah and D. Shah, Water Res., 32, 2171 (1998); doi:10.1016/S0043-1354(97)00427-2.

6.      A. De Martino, M. Iorio, P.D. Prenzler, D. Ryan, H.K. Obied and M. Arienzo, Appl. Clay Sci., 80–81, 154 (2013); doi:10.1016/j.clay.2013.01.014.

7.      Y.H. Wang, J.L. Zhu, C.G. Zhao and J.C. Zhang, Desalination, 186, 89 (2005); doi:10.1016/j.desal.2005.04.058.

8.      P. Ning, H.-J. Bart, Y. Jiang, A. de Haan and C. Tien, Sep. Purif. Technol., 41, 133 (2005); doi:10.1016/j.seppur.2004.02.004.

9. V.O. Abramov, A.V. Abramova, P.P. Keremetin, M.S. Mullakaev, G.B. Vexler and T.J. Mason, Ultrason. Sonochem., 21, 812 (2014); doi:10.1016/j.ultsonch.2013.08.013.

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.