Preparation and Mimic Enzyme Catalytic Kinetics of Dendritic Copper Complex

Jun Wang*, Guang Yang, Cuiqin Li and Peng Zhangi

Department of Petrochemical Engineer, Northeast Petroleum University, Daqing, P.R. China

*Corresponding author: Fax: +86 459 6504224; Tel: +86 459 6503624; E-mail: wangjun1965@yeah.net

Abstract

A new kind of dendritic-salicylaldehydeimine ligand was synthesized using 1.0G polyamidoamine and salicylaldehyde as raw materials through Schiff reaction and further formed dendritic copper complex by Cu complex ion. The structures of dendritic ligand and its copper complex were characterized by elemental analysis, IR, NMR, UV and XRD. With H2O2 as the oxidant, the oxidation reaction performance of dendritic copper complex catalyzing ascorbic acid was determinated by spectrophotometry and catalytic kinetic model was established. The influences of catalytic reaction order, pH value of buffer and complexes concentration on catalytic reaction rate constant were investigated. Results showed that the dendritic copper complex had good mimic enzyme activity. The catalytic reactions had the same features of pseudo-first-order reaction to enzymatic reaction. The catalytic reaction rate obviously imcreased under the conditions of higher concentration of mimic enzyme complex and pH = 7-7.5.

Keywords

Dendrimer, Schiff reaction, Mimic enzyme activity, Catalytic kinetics.

Reference (16)

1.      S.H. Medina and M.E.H. El-Sayed, Chem. Rev., 109, 3141 (2009); doi:10.1021/cr900174j.

2.      P.M.H. Heegaard, U. Boas and N.S. Sorensen, Bioconjug. Chem., 21, 405 (2010); doi:10.1021/bc900290d.

3.      B.K. Nanjwade, H.M. Bechra, G.K. Derkar, F.V. Manvi and V.K. Nanjwade, Eur. J. Pharm. Sci., 38, 185 (2009); doi:10.1016/j.ejps.2009.07.008.

4.      D.G. Mullen, M. Fang, A. Desai, J.R. Baker Jr., B.G. Orr and M.M. Banaszak Holl, ACS Nano, 4, 657 (2010); doi:10.1021/nn900999c.

5.      5 A.J. L. Villaraza, A. Bumb and M.W. Brechbiel, Chem. Rev., 110, 2921 (2010); doi:10.1021/cr900232t.

6.      G. Smith and S.F. Mapolie, J. Mol. Catal. Chem., 213, 187 (2004); doi:10.1016/j.molcata.2003.12.010.

7.      X.X. Zhao, Y.K. Yan and C.K. Chu, J. Organomet. Chem., 691, 5540 (2006); doi:10.1016/j.jorganchem.2006.08.094.

8.      S.P. Martsev, V.A. Preygerzon, Y.I. Mel’nikova, Z.I. Kravchuk, G.V. Ponomarev, V.E. Lunev and A.P. Savitsky, J. Immunol. Methods, 186, 293 (1995); doi:10.1016/0022-1759(95)00154-3.

9.      M.Y. Moridani, Cancer Lett., 243, 235 (2006); doi:10.1016/j.canlet.2005.11.046.

10.  X.B. Lu, Z.H. Wen and J.H. Li, Biomaterials, 27, 5740 (2006); doi:10.1016/j.biomaterials.2006.07.026.

11.  J. Wang, P. Zhang, S. Chen, C. Li, H. Li and G. Yang, J. Macromol. Sci. A, 50, 163 (2013); doi:10.1080/10601325.2013.741486.

12.  J. Wang, C.Q. Li, H.J. Qu, F.L. Hu and Y. Yang, Petrol. Sci. Technol., 28, 883 (2010); doi:10.1080/10916460902936986.

13.  J. Wu, K.M. Yao and D.Y. Chen, Chem. J. Chinese Univ., 19, 1211 (1998).

14.  A. Aguiari, E. Bullita, U. Casellato, P. Guerriero, S. Tamburini, P.A. Vigato and U. Russo, Inorg. Chim. Acta, 219, 135 (1994); doi:10.1016/0020-1693(94)03844-9.

15.  R. Breslow and S.D. Dong, Chem. Rev., 98, 1997 (1998); doi:10.1021/cr970011j.

16. J.Y. Wang, S.G. Zhu and C.F. Xu, Biochemistry, Higher Education Press, Beijing, Chap. 8, p. 320 (2002).

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.