Sonochemistry Synthesis of Lanthanum Ions-Doped Polyaniline/Montmorillonite Nanocomposites and Their Conductivity and Thermostability Characterization

Zunli Mo*, Chun Zhang, Guoping Zhao, Ping Zhang and Yingbing Wu

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China

*Corresponding author: E-mail: mozlnwnu2011@163.com

Abstract

A new network structure nanocomposites consisting of polyaniline (PANI), montmorillonite (MMT) and La3+ have been successfully synthesized sonochemically at normal pressure, the as-prepared products have been characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and four-probe method. The test results show that the composites have a unique conductivity and flame resistance. The factors affecting the reaction process were discussed. Furthermore, the mechanisms of phase formation and morphology control of lanthanum ions-doped polyaniline/MMT nanocomposites during the ultrasonic synthesizing process are proposed and discussed.

Keywords

Sonochemistry, Polyaniline, Montmorillonite, Lanthanum.

Reference (30)

1.      Z.L. Mo, C. Zhang, R.B. Guo, S. Meng and J. Zhang, Ind. Eng. Chem. Res., 50, 3534 (2011); doi:10.1021/ie101683x.

2.      Q.Y. Soundararajah, B.S.B. Karunaratne and R.M.G. Rajapakse, Mater. Chem. Phys., 113, 850 (2009); doi:10.1016/j.matchemphys.2008.08.055.

3.      X.G. Li, H.J. Zhou and M.R. Huang, Polymer, 46, 1523 (2005); doi:10.1016/j.polymer.2004.12.021.

4.      G.M. Do Nascimento, V.R.L. Constantino and M.L.A. Temperini, J. Phys. Chem. B, 108, 5564 (2004); doi:10.1021/jp037262i.

5.      G.M. Do Nascimento, V.R.L. Constantino, R. Landers and M.L.A. Temperini, Polymer, 47, 6131 (2006); doi:10.1016/j.polymer.2006.06.036.

6.      B.N. Narayanan, R. Koodathil, T. Gangadharan, Z. Yaakob, F.K. Saidu and S. Chandralayam, Mater. Sci. Eng. B, 168, 242 (2010); doi:10.1016/j.mseb.2009.12.027.

7.      A. Garai, B.K. Kuila and A.K. Nandi, Macromolecules, 39, 5410 (2006); doi:10.1021/ma060636w.

8.      A. Garai, B.K. Kuila and A.K. Nandi, Macromolecules, 39, 5410 (2006); doi:10.1021/ma060636w.

9.      J. Stejskal, P. Kratochvil and A.D. Jenkins, Polymer, 37, 367 (1996); doi:10.1016/0032-3861(96)81113-X.

10.  I. Bekri-Abbes and E. Srasra, Mater. Res. Bull., 45, 1941 (2010); doi:10.1016/j.materresbull.2010.08.012.

11.  J.M. Yeh, S.J. Liou, C.Y. Lai, P.-C. Wu and T.-Y. Tsai, Chem. Mater., 13, 1131 (2001); doi:10.1021/cm000938r.

12.  M. Wan, Z. Wei, Z. Zhang, L. Zhang, K. Huang and Y. Yang, Synth. Met., 135-136, 175 (2003); doi:10.1016/S0379-6779(02)00563-5.

13.  J. Huang, S. Virji, B.H. Weiller and R.B. Kaner, J. Am. Chem. Soc., 125, 314 (2003); doi:10.1021/ja028371y.

14.  L. Wang, J.L. Schindler, J.A. Thomas, C.R. Kannewurf and M.G. Kanatzidis, Chem. Mater., 7, 1753 (1995); doi:10.1021/cm00058a001.

15.  C.G. Wu, D.C. De Groot, H.O. Marcy, J.L. Schindler, C.R. Kannewurf, T. Bakas, V. Papaefthymiou, W. Hirpo and J.P. Yesinowski, J. Am. Chem. Soc., 117, 9229 (1995); doi:10.1021/ja00141a015.

16.  M.G. Kanatzidis, C.G. Wu, H.O. Marcy and C.R. Kannewurf, J. Am. Chem. Soc., 111, 4139 (1989); doi:10.1021/ja00193a078.

17.  A. Usuki, M. Kato, A. Okada and T. Kurauchi, J. Appl. Polym. Sci., 63, 137 (1997); doi:10.1002/(SICI)1097-4628(19970103)63:1<137::AID-APP15>3.0.CO;2-2.

18.  S.D. Burnside and E.P. Giannelis, Chem. Mater., 7, 1597 (1995); doi:10.1021/cm00057a001.

19.  I. Harada, Y. Furukawa and F. Ueda, Synth. Met., 29, 303 (1989); doi:10.1016/0379-6779(89)90311-1.

20.  H. Van Hoang and R. Holze, Chem. Mater., 18, 1976 (2006); doi:10.1021/cm052707w.

21.  D. Lee, K. Char, S. Wook Lee and Y. Woo Park, J. Mater. Chem., 13, 2942 (2003); doi:10.1039/b303235c.

22.  T. Stutzmann and B. Siffert, Clays Clay Miner., 25, 392 (1977); doi:10.1346/CCMN.1977.0250604.

23.  P. Bober, J. Stejskal, M. Spírková, M. Trchová, M. Varga and J. Prokeš, Synth. Met., 160, 2596 (2010); doi:10.1016/j.synthmet.2010.10.010.

24.  H.W.V. Marel and H. Beutelspacher, Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures, Elsevier Science Ltd., Amsterdam (1976).

25.  H.X. Gao, T. Jiang, B.X. Han, Y. Wang, J. Du, Z. Liu and J. Zhang, Polymer, 45, 3017 (2004); doi:10.1016/j.polymer.2004.03.002.

26.  B.N. Narayanan, R. Koodathil, T. Gangadharan, Z. Yaakob, F.K. Saidu and S. Chandralayam, Mater. Sci. Eng. B, 168, 242 (2010); doi:10.1016/j.mseb.2009.12.027.

27.  S.E. Bourdo and T. Viswanathan, Carbon, 43, 2983 (2005); doi:10.1016/j.carbon.2005.06.016.

28.  K.A. Carrado and L.Q. Xu, Chem. Mater., 10, 1440 (1998); doi:10.1021/cm970814n.

29.  L. Wang, M. Rocci-Lane, P. Brazis, C.R. Kannewurf, Y.-I. Kim, W. Lee, J.-H. Choy and M.G. Kanatzidis, J. Am. Chem. Soc., 122, 6629 (2000); doi:10.1021/ja9944610.

30.  W. Bonrath, Ultrason. Sonochem., 10, 55 (2003); doi:10.1016/S1350-4177(02)00154-2.

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.