Metals as Renewable Catalysts in MCR Synthesis of Dihydropyrimidinones

Humaira Firdous1, Ansa Madeeha Zafar2, Muhammad Naeem Khan3,*, Najma Parveen4, Munawar Ali Munawar1 and Misbahul Ain Khan1,2

1Institute of Chemistry, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan

2Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan

3Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore, Pakistan

4Department of Chemistry, The Government Sadiq College Women University, Bahawalpur, Pakistan

*Corresponding author: E-mail: changwani_1@yahoo.com

Abstract

Various metals (Cu, Fe, Al and Zn) have been successfully employed in the MCR of aryl carbaldehydes, ethyl acetoacetate and urea to give respective dihydropyrimidinones in good to excellent yields. The catalysts in these reactions are easily recovered and used many times without losing its catalytic activity. The products were duly characterized through their spectral analysis.

Keywords

Biginelli synthesis, Zn, Cu, Al, Fe, Pyrimidines.

Reference (30)

1.      C.O. Kappe, Tetrahedron, 49, 6937 (1993); doi:10.1016/S0040-4020(01)87971-0.

2.      P. Biginelli, Gazz. Chim. Ital., 23, 360 (1893).

3.      K.S. Atwal, B.N. Swanson, S.E. Unger, D.M. Floyd, S. Moreland, A. Hedberg and B.C. O’Reilly, J. Med. Chem., 34, 806 (1991); doi:10.1021/jm00106a048.

4.      C.O. Kappe, Eur. J. Med. Chem., 35, 1043 (2000); doi:10.1016/S0223-5234(00)01189-2.

5.      (a) T.U. Mayer, T.M. Kapoor, S.J. Haggarty, R.W. King, S.L. Schreiber and T.J. Mitchison, Science, 286, 971 (1999); doi:10.1126/science.286.5441.971; (b) T.M. Kapoor, T.U. Mayer, M.L. Coughlin and T.J. Mitchison, J. Cell Biol., 150, 975 (2000); doi:10.1083/jcb.150.5.975.

6.      E.W. Hurst and R. Hull, J. Med. Pharm. Chem., 3, 215 (1961); doi:10.1021/jm50015a002.

7.      M. Ashok, B.S. Holla and N.S. Kumari, Eur. J. Med. Chem., 42, 380 (2007); doi:10.1016/j.ejmech.2006.09.003.

8.      S.W. Fewell, C.M. Smith, M.A. Lyon, T.P. Dumitrescu, P. Wipf, B.W. Day and J.L. Brodsky, J. Biol. Chem., 279, 51131 (2004); doi:10.1074/jbc.M404857200.

9.      A.M. Magerramov, M.M. Kurbanova, R.T. Abdinbekova, I.A. Rzaeva, V.M. Farzaliev and M.A. Allakhverdiev, Russ. J. Appl. Chem., 79, 787 (2006); doi:10.1134/S107042720605017X.

10.  C.O. Kappe and S.F. Falsone, Synlett, 718 (1998); doi:10.1055/s-1998-1764.

11.  Y. Zhu, Y. Pan and S. Huang, Synth. Commun., 34, 3167 (2004); doi:10.1081/SCC-200028607.

12.  G. Sabitha, G.S. Kumar Reddy, C.S. Reddy and J.S. Yadav, Synlett, 858 (2003); doi:10.1055/s-2003-38734.

13.  I. Cepanec, M. Litvić, A. Bartolinćić and M. Lovrić, Tetrahedron, 61, 4275 (2005); doi:10.1016/j.tet.2005.02.059.

14.  (a) K. Folkers and T.B. Johnson, J. Am. Chem. Soc., 55, 2886 (1933); doi:10.1021/ja01334a043; (b) K. Folkers and T.B. Johnson, J. Am. Chem. Soc., 55, 3784 (1933); doi:10.1021/ja01336a054.

15.  E.H. Hu, D.R. Sidler and U.H. Dolling, J. Org. Chem., 63, 3454 (1998); doi:10.1021/jo970846u.

16.  J. Lu, Y. Bai, Z. Wang, B. Yang and H. Ma, Tetrahedron Lett., 41, 9075 (2000); doi:10.1016/S0040-4039(00)01645-2.

17.  D.S. Bose, L. Fatima and H.B. Mereyala, J. Org. Chem., 68, 587 (2003); doi:10.1021/jo0205199.

18.  B.C. Ranu, A. Hajra and U. Jana, J. Org. Chem., 65, 6270 (2000); doi:10.1021/jo000711f.

19.  K. Ramalinga, P. Vijayalakshmi and T.N.B. Kaimal, Synlett, 863 (2001); doi:10.1055/s-2001-14587.

20.  A.S. Paraskar, G.K. Dewkar and A. Sudalai, Tetrahedron Lett., 44, 3305 (2003); doi:10.1016/S0040-4039(03)00619-1.

21.  G. Maiti, P. Kundu and C. Guin, Tetrahedron Lett., 44, 2757 (2003); doi:10.1016/S0040-4039(02)02859-9.

22.  N.Y. Fu, Y.F. Yuan, Z. Cao, S.W. Wang, J.T. Wang and C. Peppe, Tetrahedron, 58, 4801 (2002); doi:10.1016/S0040-4020(02)00455-6.

23.  A.K. Bose, M.S. Manhas, S. Pednekar, S.N. Ganguly, H. Dang, W. He and A. Mandadi, Tetrahedron Lett., 46, 1901 (2005); doi:10.1016/j.tetlet.2005.01.087.

24.  J.C. Rodriguez-Dominguez, D. Bernardi and G. Kirsch, Tetrahedron Lett., 48, 5777 (2007); doi:10.1016/j.tetlet.2007.06.104.

25.  E. Rafiee and H. Jafari, Bioorg. Med. Chem. Lett., 16, 2463 (2006); doi:10.1016/j.bmcl.2006.01.087.

26.  A. Kumar and R.M. Maurya, Tetrahedron Lett., 48, 4569 (2007); doi:10.1016/j.tetlet.2007.04.130.

27.  A. Karamat, M.A. Khan and A. Sharif, J. Chinese Chem. Soc., 57, 1099 (2010); doi:10.1002/jccs.201000155; S. Imtiaz, M.A. Khan, A. Sharif, E. Ahmed, W.-O. Lin and M.A. Munawar, J. Chinese Chem. Soc., 59, 1446 (2012); doi:10.1002/jccs.201100472; A.M. Zafar, S. Qureshi, M.N. Khan, M. Azad, M.A. Munawar and M.A. Khan, Asian J. Chem., 25, 3244 (2013); doi:10.14233/ajchem.2013.13607; S. Noreen, S. Perveen, M.N. Khan, A. Nazeer, M.A. Khan, M.A. Munawar, R. Babar, F. Suhail, M. Azad, A.M.R. Bernardino and M.S. Dos Santos, Asian J. Chem., 25, 4770 (2013); doi:10.14233/ajchem.2013.14094.

28.  K. Folkers, H.J. Harwood and F.B. Johnson, J. Am. Chem. Soc., 54, 3751 (1932); doi:10.1021/ja01348a040.

29.  Y. Yu, D. Liu, C. Liu and G. Luo, Bioorg. Med. Chem. Lett., 17, 3508 (2007); doi:10.1016/j.bmcl.2006.12.068.

30.  J.S. Yadav, B.V. Subba Reddy, P. Sridhar, J.S.S. Reddy, K. Nagaiah, N. Lingaiah and P.S. Saiprasad, Eur. J. Org. Chem., 552 (2004); doi:10.1002/ejoc.200300559.

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.