Highly Efficient Zinc Oxide Nanoparticles Catalyzed Green Synthesis of 1,5-Benzodiazepines under Solvent-Free Path

Yuhao Zhao1, Xuejie Yu2, Manpreet Saini3, Yanxu Ma4,* and Rajesh K. Singh3,*

1School of Traditional Chinese Medicine, Capital Medical University, 100069 Beijing, P.R. China

2Beijing University of Chinese Medicine, 100029 Beijing, P.R. China

3Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal-140 126, India

4Department of Orthopedics, Beijing Traditional Chinese Medicine Hospital, Capital Medical University, Beijing 100010, P.R. China

*Corresponding authors: E-mail: rksingh244@gmail.com; yanxumabjtcm@126.com


An efficient and simple environment-friendly method for the preparation of substituted 1,5-benzodiazepines as biologically interesting compounds under heterogenous catalyst is described. The one-pot multicomponent condensation of o-phenylene-diamine and substituted ketones catalyzed by zinc oxide nanoparticles (ZnO NPs) under microwave under solvent-free condition has been developed. The present protocol provides a green and improved pathway for the synthesis of 1,5-benzodiazepines in terms of excellent yields, short reaction times and reusability of catalyst.


1,5-Benzodiazepines, Zinc oxide nanoparticles, Heterogenous catalyst.

Reference (19)

1.      I. Ugi, Pure Appl. Chem., 73, 187 (2011).

2.      D.J. Ramon and M. Yus, Angew. Chem. Int. Ed., 44, 1602 (2005); doi:10.1002/anie.200460548.

3.      L.O. Randall and B. Kappel, in eds.: S. Garattini, E. Mussini and L.O. Randall, Benzodiazepines, Raven Press: New York, p. 27 (1973).

4.      H. Schutz, Benzodiazepines, Springer: Heidelberg (1982).

5.      L.K. Landquist, Comprehensive Heterocyclic Chemistry, Pergamon: Oxford, vol. 1, p. 166 (1984).

6.      R. Varala, R. Enugala and S.R. Adapa, J. Braz. Chem. Soc., 18, 291 (2007); doi:10.1590/S0103-50532007000200008.

7.      A.M. El-Sayed, A. Khodairy, H. Salah and H. Abdel-Ghany, Phosphorous Sulphur Silicon Rel. Elem., 182, 711 (2007); doi:10.1080/10426500601087301.

8.      X.-Q. Li and L.-Z. Wang, Chin. Chem. Lett., 25, 327 (2014); doi:10.1016/j.cclet.2013.11.035.

9.      S.S. Ilango, P.U. Remya and S. Ponnuswamy, Indian J. Chem., 52B, 136 (2013).

10.  J.H. Clark, Pure Appl. Chem., 73, 103 (2001); doi:10.1351/pac200173010103.

11.  H.H. Kung, Transition Metal Oxides: Surface Chemistry and Catalysis, Elsevier Science, New York, NY, USA, 1989.

12.  C. Pacholski, A. Kornowski and H. Weller, Angew. Chem., 41, 1188 (2002); doi:10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5.

13.  F.M. Moghaddam, H. Saeidian, Z. Mirjafary and A. Sadeghi, J. Iranian Chem. Soc., 6, 317 (2009); doi:10.1007/BF03245840.

14.  B.V. Kumar, H.S.B. Naik, D. Girija and B.V. Kumar, J. Chem. Sci., 123, 615 (2011); doi:10.1007/s12039-011-0133-0.

15.  M. Hosseini-Sarvari, J. Iranian Chem. Soc., 8(S1), S119 (2011); doi:10.1007/BF03254288.

16.  I. Yavari and S. Beheshti, J. Iranian Chem. Soc., 8, 1030 (2011); doi:10.1007/BF03246559.

17.  J. Safaei-Ghomi, M.A. Ghasemzadeh and S. Zahedi, J. Mex. Chem. Soc., 57, 1 (2013).

18.  (a) R. Duvedi and R.K. Singh, Asian J. Chem., 24, 5665 (2012); (b) A. Sandhar, D.N. Prasad and R.K. Singh, Indian J. Heterocycl. Chem., 21, 369 (2012); (c) A. Sandhar, D.N. Prasad, A. Kapoor and R.K. Singh, Curr. Res. Chem., 4, 68 (2012); doi:10.3923/crc.2012.68.75.; (d) A. Sandhar and R.K. Singh, Asian J. Chem., 24, 5643 (2012); (e) S. Malik, S. Sharma and R.K. Singh, Asian J. Chem., 24, 5669 (2012); (f) P. Kaur, H. Sharma, R. Rana, D.N. Prasad and R.K. Singh, Asian J. Chem., 24, 5649 (2012); (g) Y. Zhao, S. Sharma, M. Huang, A. Kaur, R.K. Singh and Y. Ma, Asian J. Chem., 26, 5116 (2014); doi:10.14233/ajchem.2014.16440; (h) T. Li, X. Zhai, D. Singh, R.K. Singh and X. Xu, Asian J. Chem., 26, 5207 (2014); doi:10.14233/ajchem.2014.16707.

19.  J. Safaei-Ghomi and M.A. Ghasemzadeh, Arab. J. Chem., doi:10.1016/j.arabjc.2013.06.030.

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.