Optimization of Process Variables in Esterification of iso-Octanol with Acetic Acid using Acid Ionic Liquid as Catalyst

Du Huan, Song Lelian, Tan Zhongqin and Xiaoxiang Han*

Department of Applied Chemistry, College of Food Science & Biotechnology Engineering, Zhejiang Gongshang University, Hangzhou, 310035, P.R. China

*Corresponding author: Tel: +86 571 88071024 7581; E-mail: hxx74@126.com; han-xx74@163.com

Abstract

Response surface methodology was successfully applied to optimize esterification of iso-octanol with acetic acid. The effects of various reaction conditions, including reaction time, substrate molar ratio, the amount of catalyst and the amount of water carrying agent were investigated. A Box-Behnken Design was employed to search for the optimal yield of iso-octyl acetate. The analysis confirmed that the reaction time and the amount of water carrying agent were the significant factors affecting the yield of iso-octyl acetate. The coefficient of determination of the model was 0.8922. Under the optimized conditions, the yield of iso-octyl acetate reached 95.35 %, in close agreement with values predicted by the mathematical model. The ionic liquids could be reused five times without noticeable drop in activity.

Keywords

Ionic liquid, Response surface methodology, Isooctyl acetate, Esterification.

Reference (19)

1.      I.J. Dijs, H.L.F. van Ochten, C.A. van Walree, J.W. Geus and L.W. Jenneskens, J. Mol. Catal. Chem., 188, 209 (2002); doi:10.1016/S1381-1169(02)00334-5.

2.      A. Heidekum, M.A. Harmer and W.F. Hoelderich, J. Catal., 181, 217 (1999); doi:10.1006/jcat.1998.2300.

3.      R. A. Crane, S. H. Brown and L. De Caul, USP 5973193 (1999).

4.      K. Sano, M. Nishiyama, T. Suzuki, S. Wakabayashi and K. Miyahara, USP 5189201 (1993).

5.      Y.Y. Wang, X.X. Gong, Z.Z. Wang and L.Y. Dai, J. Mol. Catal. Chem., 322, 7 (2010); doi:10.1016/j.molcata.2010.01.011.

6.       M. Ghiaci, B. Aghabarari, S. Habibollahi and A. Gil, Bioresour. Technol., 102, 1200 (2011); doi:10.1016/j.biortech.2010.09.095.

7.      A.S. Amarasekara and O.S. Owereh, Catal. Commun., 11, 1072 (2010); doi:10.1016/j.catcom.2010.05.012.

8.      X.L. Tong and Y.D. Li, ChemSusChem, 3, 350 (2010); doi:10.1002/cssc.200900224.

9.      J. Fraga-Dubreuil, K. Bourahla, M. Rahmouni, J.P. Bazureau and J. Hamelin, Catal. Commun., 3, 185 (2002); doi:10.1016/S1566-7367(02)00087-0.

10.        G. Lombardi-Boccia, B. Martínez-Domínguez, A. Aguzzi and F. Rincón-León, Food Chem., 78, 505 (2002); doi:10.1016/S0308-8146(02)00211-X.

11.  M.S. Tanyildizi, D. Özer and M. Elibol, Process Biochem., 40, 2291 (2005); doi:10.1016/j.procbio.2004.06.018.

12.        K.T. Tan, K.T. Lee and A.R. Mohamed, Bioresour. Technol., 101, 965 (2010); doi:10.1016/j.biortech.2009.09.004.

13.  C.J. Shieh, H.F. Liao and C.C. Lee, Bioresour. Technol., 88, 103 (2003); doi:10.1016/S0960-8524(02)00292-4.

14.  X.X. Han and L.X. Zhou, Chem. Eng. J., 172, 459 (2011); doi:10.1016/j.cej.2011.06.025.

15.  X. D. Wu, X. X. Han, L. X. Zhou and A. Li, Indian J. Chem., 51A, 791 (2012).

16.  H. Xing, T. Wang, Z. Zhou and Y. Dai, Ind. Eng. Chem. Res., 44, 4147 (2005); doi:10.1021/ie0488703.

17.  E. Martendal, D. Budziak and E. Carasek, J. Chromatogr. A, 1148, 131 (2007); doi:10.1016/j.chroma.2007.02.079.

18.  R.H. Myers and U.S.A. Boston, Allyn and Bacan Inc., pp. 67-125 (1971).

19.  G.E.P. Box, W.G. Hunter and J.S. Hunter, John Wiley & Sons, New York, pp. 291-334 (1978).

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.