Vapor-Liquid Equilibrium Experiments for Di-n-propyl Ether and 1-Propanol Binary System at 1,013 and 300 mbar and Prediction of Equilibrium Experimental Data using Wilson, UNIQUAC and NRTL Models

Yu Mi Kim1, Sung Gook Oh2, Dongsun Kim3 and Jungho Cho3,*

1Process Solution Team, Kumho Petrochemical R and BD Center, Daejeon, Republic of Korea

2School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea

3Department of Chemical Engineering, Kongju National University, Cheonan, Republic of Korea

*Corresponding author: Fax: +82 41 5542640, Tel: +82 41 5219366; E-mail:


Herein, isobaric vapor-liquid phase equilibrium experiments for the binary mixture of di-n-propyl ether and 1-propanol were performed at 1,013 and 300 mbar, respectively. At 1,013 mbar, an azeotrope was formed where the mole composition of di-n-propyl ether is 0.6472 with azeotropic temperature of 90.18 °C. On the other hand, at 300 mbar, an azeotrope was formed with a mole composition of 0.7682 mole fraction of di-n-propyl ether and an azeotropic temperature of 52.61 °C. Throughout these vapor-liquid phase equilibrium experiments, it was observed that the azeotropic point of the di-n-propyl ether/1-propanol binary system changes with the system pressure. By conducting a regression analysis of the binary vapor-liquid phase equilibrium experimental data using liquid activity coefficients thermodynamics (LACT) models, such as UNIQUAC, NRTL and Wilson embedded in PRO/II with PROVISION 9.1, a commercial chemical process simulator from Invensys, Inc., optimum binary interaction parameters for the individual model equations were determined. This work lead to the generation of binary interaction parameters that better fit the experimental data parameters embedded in the PRO/II simulator.


Vapor-liquid equilibrium experiments, Di-n-propyl ether, 1-Propanol.

Reference (8)

1.      J.P. Knapp and M.F. Doherty, Ind. Eng. Chem. Res., 31, 346 (1992); doi:10.1021/ie00001a047.

2.      W.F. Furter, Chem. Eng. Commun., 116, 35 (1992); doi:10.1080/00986449208936042.

3.      P. Kaul and R. Thrasher, SPE Reserv. Eng., 11, 273 (1996); doi:10.2118/26640-PA.

4.      G.M. Kontogeorgis, A. Fredenslund and D.P. Tassios, Ind. Eng. Chem. Res., 32, 362 (1993); doi:10.1021/ie00014a013.

5.      T. Anderson and J. Prausnitz, Ind. Eng. Chem. Process Des. Dev., 17, 552 (1978); doi:10.1021/i260068a028.

6.      H. Renon and J. Prausnitz, Ind. Eng. Chem. Process Des. Dev., 8, 413 (1969); doi:10.1021/i260031a019.

7.      R. Orye and J. Prausnitz, Ind. Eng. Chem., 57, 18 (1965); doi:10.1021/ie50665a005.

8.      E. Lladosa, J.B. Montón, M.C. Burguet and R. Muñoz, Fluid Phase Equilib., 247, 47 (2006); doi:10.1016/j.fluid.2006.06.017.

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.