Structure and Magnetic Properties of Yttrium-Doped M-Type Strontium Ferrite

Xiao-Fei Niu1,2 and Ming-Yu Zhang1,*

1Anhui Key Laboratory of Spintronics and Nanomaterials Research,Suzhou University, Suzhou 234000, P.R. China

2School of Physics and Material Science of Anhui University, Hefei 230039, P.R. China

*Corresponding author: E-mail: 65666409@qq.com

Abstract

In this paper we have prepared yttrium-doped M-type strontium ferrite SrYxFe(12-x)O19 (x = 0, 0.25, 0.5, 0.75, 1) calcined materials by solid-phase sintering method at 1150 °C for 3 h. Then the calcined materials were pressed for magnets under the condition of oriented magnetic field and sintered in 1295 °C for 3 h. We have used X-ray diffraction, scanning electron microscope and magnetic tester analyze the phase structure of the sintered magnets, the surface morphology of the sintered magnet and the magnetic properties of the sintered magnets, respectively. The results showed that with the increase of yttrium-doped, the lattice constant ‘a’ increases first of all and then decreases ‘c’ increases slowly, a/c first increases and then decreases, crystal X-ray density dx-ray approximation increases linearly. SEM showed that the magnet has prepared a typical hexagonal structure morphology. Magnetic studies showed that with the doping of yttrium increase, the remanence Br increasing monotonically, intrinsic coercivity Hcj and maximum energy product (BH)max and coercivity magnetic induction Hcb are first increases and then decreases. When the x = 1, have the maximum remanence Br with 420.7 mT, but the intrinsic coercivity Hcj decreases to a minimum value; when x = 0.75 the intrinsic coercivity Hcj have a maximum value of 323.7 KA·m-1 and the remanence Br reach 410.4 mT.

Keywords

Yttrium-doped, SrYxFe(12-x)O19, Solid-phase sintering, M-type strontium ferrite, Lattice constants.

Reference (18)

1.      Y.S. Hong, C.M. Ho, H.Y. Hsu and C.T. Liu, J. Magn. Magn. Mater., 279, 401 (2004); doi:10.1016/j.jmmm.2004.02.008.

2.      A. Mali and A. Ataie, Scr. Mater., 53, 1065 (2005); doi:10.1016/j.scriptamat.2005.06.037.

3.      A. Vijayalakshmi and N.S. Gajbhiye, J. Appl. Phys., 83, 400 (1998); doi:10.1063/1.366654.

4.      S.A. Oliver, S.D. Yoon, I. Kozulin, M.L. Chen and C. Vittoria, Appl. Phys. Lett., 76, 3612 (2000); doi:10.1063/1.126723.

5.      N. Kishan Reddy and V.N. Mulay, Mater. Chem. Phys., 76, 75 (2002); doi:10.1016/S0254-0584(01)00501-6.

6.      Z. Pang, X. Zhang, B. Ding, D. Bao and B. Han, J. Alloys Comp., 492, 691 (2010); doi:10.1016/j.jallcom.2009.12.019.

7.      N. Chen, K. Yang and M. Gu, J. Alloys Comp., 490, 609 (2010); doi:10.1016/j.jallcom.2009.10.116.

8.      P. Sharma, A. Verma, R.K. Sidhu and O.P. Pandey, J. Alloys Comp., 361, 257 (2003); doi:10.1016/S0925-8388(03)00390-6.

9.      G. Litsardakis, I. Manolakis and K. Efthimiadis, J. Alloys Comp., 427, 194 (2007); doi:10.1016/j.jallcom.2006.02.044.

10.  X.R. Tang, Central South University Press, pp. 174-184 (1992).

11.  J. Fu, T. Jiang and D. Zhu, Central South University Press, pp. 125-151 (1996).

12.  X.S. Liu, D. Zhu and P. Yin, A Calcium Ferrite Material and Method, 200910251673.3.

13.  X.S. Liu, D.N. Jia, F. Hu, et al.., Rare Metal Mater. Des., 9, 63 (2012).

14.  T.J. Chang and X. Qi, Harbin Institute of Technology Press, Heilongjiang, China, pp. 64-76 (1999).

15.  G. Xu, H. Ma, M. Zhong, J. Zhou, Y. Yue and Z. He, J. Magn. Magn. Mater., 301, 383 (2006); doi:10.1016/j.jmmm.2005.07.014.

16.  R.P. Cowburn and M.E. Welland, Science, 287, 1466 (2000); doi:10.1126/science.287.5457.1466.

17.  P. Berthet, J. Berthon, G. Heger and A. Revcolevschi, Mater. Res. Bull., 27, 919 (1992); doi:10.1016/0025-5408(92)90190-B.

18.  R.C. Pullar, Prog. Mater. Sci., 57, 1191 (2012); doi:10.1016/j.pmatsci.2012.04.001.

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.