Experimental Study of Vapor-Liquid Equilibrium and Optimization of Pressure-Swing Distillation for Methanol-Dimethyl Carbonate Binary System

Jaesuk Cho1, Yu Mi Kim2, Jaehyun Noh3, Dong Sun Kim1 and Jungho Cho1,*

1Department of Chemical Engineering, Kongju National University, Cheonan, Republic of Korea

2Process Solution Team, Kumho Petrochemical R&BD Center, Daejeon, Republic of Korea

3Department of Chemical Engineering, Hoseo University, Asan, Republic of Korea

*Corresponding author: Fax: +82 41 5542640; Tel: +82 41 5219366; E-mail: jhcho@kongju.ac.kr


The mixture of methanol and dimethyl carbonate is characterized by an azeotropic point, thus, it is impossible to separate the azeotrope into respective high-purity products by general distillation. Herein, the separation of a methanol-dimethyl carbonate mixture via pressure-swing distillation was evaluated based on modeling and optimization of the separation process to obtain high-purity dimethyl carbonate. Currently, no experimental data on vapor-liquid equilibrium of methanol-dimethyl carbonate system is available in existing references. And even PRO/II, Aspen Plus, and ChemCAD simulation programs do not include a built-in binary interaction parameter of thermodynamic model of methanol-dimethyl carbonate system for accurate calculation. Therefore, the vapor-liquid equilibrium of the methanol-dimethyl carbonate binary system was experimentally evaluated under low-pressure and atmospheric pressure conditions and the binary interaction parameters were deduced from the non-random two-liquid model regression using the experimental data. The obtained binary interaction parameters were applied in modeling of the pressure-swing distillation process. Reboiler heat duty values from simulations under high-low pressure and low-high pressure configuration processes were compared and the process was optimized to minimize the heat duty.


Dimethyl Carbonate, Vapor-liquid equilibrium, Pressure-swing distillation.

Reference (12)

1.      H. Niu, H. Guo, J. Yao, Y. Wang and G. Wang, J Mol. Catal. A, 259, 292 (2006); doi:10.1016/j.molcata.2006.06.040.

2.      E.-S. Jeong, K.-H. Kim, D.-W. Park and S.-W. Park, Applied Chem., 8, 593 (2004).

3.      A. Rodriguez, J. Canosa, A. Dominguez and J. Tojo, Fluid Phase Equilib., 201, 187 (2002); doi:10.1016/S0378-3812(02)00201-7.

4.      S.-J. Wang, C.-C. Yu and H.-P. Huang, Comput. Chem. Eng., 34, 361 (2010); doi:10.1016/j.compchemeng.2009.05.002.

5.      L.L. William and L.I. Chien, Design and Control of Distillation Systems for Separating Azeotropes, John Wiley & Sons, Inc (2010).

6.      PRO/IITM Keyword Manual, Invensys Systems, Inc (2010).

7.      H. Renon and J.M. Prausnitz, Ind. Eng. Chem. Process Des. Dev., 8, 413 (1969); doi:10.1021/i260031a019.

8.      H. Renon and J.M. Prausnitz, AIChE J., 14, 135 (1968); doi:10.1002/aic.690140124.

9.      G. Soave, Chem. Eng. Sci., 27, 1197 (1972); doi:10.1016/0009-2509(72)80096-4.

10.  J.A. Barker, Aust. J. Chem., 6, 207 (1953); doi:10.1071/CH9530207.

11.  H.-M. Wei, F. Wang, J.-L. Zhang, B. Liao, N. Zhao, F.-K. Xiao, W. Wei and Y.-H. Sun, Ind. Eng. Chem. Res., 52, 11463 (2013); doi:10.1021/ie3034976.

12.  PRO/II Application Briefs, Simulation Sciences Inc. (2005).

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.