Distribution of Arsenic Forms in Decomposed Solidwaste

Shah Rukh1,*, Mohammad Saleem Akhtar1, Mehruinsa Memon2, Ayaz Mehmood1 and Muhammad Imran1

1PMAS Arid Agriculture University, Rawalpindi, Pakistan

2Sindh Agriculture University, Tando Jam, Pakistan

*Corresponding author: Email: shahrukhshah86@hotmail.com

Abstract

Arsenic forms distribution helps to understand its chemical processes and bioavailability. Total and distribution of arsenic fractions in decomposed solidwastes measured by an atomic absorption spectrophotometer with flame heated quartz adsorption cell coupled to a hydride generation device, are reported. The system had detection limit 2.42 μg L-1 for total arsenic. The decomposed solidwaste was collected from historic dumpsites of three cities and analyzed for total by digestion in three acids and for the arsenic forms using sequential Wenzel et al. extraction scheme. Lower than reported for contaminated soil and solidwaste, total arsenic in the solid waste ranged 2.5 to 7 mg kg-1 which occurred dominantly as specifically-sorbed fraction (675 to 3070 μg kg-1) positively correlated with extractable iron oxides and dissolved organic carbon. Overall the arsenic forms followed the order amorphous and poorly-crystalline metal oxides sorbed arsenic > residual phases > well crystalline metal oxides sorbed arsenic > non-specifically sorbed arsenic fraction. This study concludes that arsenic primarily occurred as specifically sorbed fraction to iron oxides and correlation with dithionite extractable iron implied that a reducing condition (eg., prolonged submergence) may release arsenic to the environment.

Keywords

Arsenic, Arsenic forms, Sequential extraction, Decomposed solid waste.

Reference (40)

1.      B.K. Mandal and K.T. Suzuki, Talanta, 58, 201 (2002); doi:10.1016/S0039-9140(02)00268-0.

2.      E. Moreno-Jiménez, J.M. Peñalosa, E. Esteban and M.P. Bernal, J. Environ. Monit., 11, 1375 (2009); doi:10.1039/b822335a.

3.      P.S. Fedotov, W.J. Fitz, R. Wennrich, P. Morgenstern and W.W. Wenzel, Anal. Chim. Acta, 538, 93 (2005); doi:10.1016/j.aca.2005.02.034.

4.      X. Gao, Y. Wang and Q. Hu, Environ. Geochem. Health, 1, 9395 (2011).

5.      A. Hanc, J. Szakova and P. Svehla, Bioresour. Technol., 126, 444 (2012);
doi:10.1016/j.biortech.2011.11.053.

6.      R.S. Braman and C.C. Foreback, Science, 182, 1247 (1973); doi:10.1126/science.182.4118.1247.

7.      E.P. Adamma, O.K. Israel and S.H. Adinoyi, Int. J. Res. Chem. Environ., 3, 125 (2013).

8.      M. Kumaresan and P. Riyazuddin, Curr. Sci., 80, 837 (2001).

9.      X.C. Le, X. Lu, M. Ma, W.R. Cullen, V. Aposhian and B. Zheng, Anal. Chem., 72, 5172 (2000); doi:10.1021/ac000527u.

10.  W.R. Cullen and K.J. Reimer, Chem. Rev., 89, 713 (1989); doi:10.1021/cr00094a002.

11.  D.E. Carter, H.V. Aposhian and A.J. Gandolfi, Toxicol. Appl. Pharmacol., 193, 309 (2003); doi:10.1016/j.taap.2003.07.009.

12.  J.C.J. Nóvoa-Muñoz, J.M.G. Queijeiro, D. Blanco-Ward, C. Álvarez-Olleros, E. García-Rodeja and A. Martínez-Cortizas, Sci. Total Environ., 378, 18 (2007); doi:10.1016/j.scitotenv.2007.01.026.

13.  E. Lombi, R.S. Sletten and W.W. Wenzel, Water Air Soil Pollut., 124, 319 (2000); doi:10.1023/A:1005230628958.

14.  M. Mihaljevic, M. Ponavic, V. Ettler and O. Sebek, Anal. Bioanal. Chem., 377, 723 (2003); doi:10.1007/s00216-003-2115-7.

15.  W.W. Wenzel, N. Kirchbaumer, T. Prohaska, G. Stingeder, E. Lombi and D.C. Adriano, Anal. Chim. Acta, 436, 309 (2001); doi:10.1016/S0003-2670(01)00924-2.

16.  J.C. Aciego Pietri and P.C. Brookes, Soil Biol. Biochem., 40, 1856 (2008); doi:10.1016/j.soilbio.2008.03.020.

17.  T. Chibsa and A. Asefa, World Appl. Sci. J., 6, 1506 (2009).

18.  R.G. McLaren, R. Naidu, J. Smith and K.G. Tiller, J. Environ. Qual., 27, 348 (1998); doi:10.2134/jeq1998.00472425002700020015x.

19.  M. Simón, I. Ortiz, I. García, J. Fernández, E. Fernández, C. Dorronsoro and J. Aguilar, Sci. Total Environ., 242, 105 (1999); doi:10.1016/S0048-9697(99)00378-2.

20.  D.G. Lumsdon, J.C.L. Meeussen, E. Paterson, L.M. Garden and P. Anderson, Appl. Geochem., 16, 571 (2001); doi:10.1016/S0883-2927(00)00063-9.

21.  X. Sun and H. Doner, Soil Sci., 161, 865 (1996); doi:10.1097/00010694-199612000-00006.

22.  M.M. Grafe, J. Eick and P.R. Grossl, Soil Sci. Soc. Am. J., 65, 1680 (2001); doi:10.2136/sssaj2001.1680.

23.  T. Larssen, R.D. Vogt, H.M. Seip, G. Furuberg, B. Liao, J. Xiao and J. Xiong, Geoderma, 91, 65 (1999); doi:10.1016/S0016-7061(98)00131-1.

24.  M. Bauer and C. Blodau, Sci. Total Environ., 354, 179 (2006); doi:10.1016/j.scitotenv.2005.01.027.

25.  A.D. Redman, D.L. Macalady and D. Ahmann, Environ. Sci. Technol., 36, 2889 (2002); doi:10.1021/es0112801.

26.  P.L. Giusquiani, L. Concezzi, M. Businelli and A. Macchioni, J. Environ. Qual., 27, 364 (1998); doi:10.2134/jeq1998.00472425002700020017x.

27.  F.X. Han, W.L. Kingery, H.M. Selim, P.D. Gerard, M.S. Cox and J.L. Oldham, Sci. Total Environ., 320, 51 (2004); doi:10.1016/S0048-9697(03)00441-8.

28.  M. Sadiq, Water Air Soil Pollut., 93, 117 (1997); doi:10.1007/BF02404751.

29.  W. Hartley, N.M. Dickinson, P. Riby, E. Leese, J. Morton and N.W. Lepp, Environ. Pollut., 158, 3560 (2010); doi:10.1016/j.envpol.2010.08.015.

30.  J. Gimenez, M. Martinez, J. Depablo, M. Rovira and L. Duro, J. Hazard. Mater., 141, 575 (2007); doi:10.1016/j.jhazmat.2006.07.020.

31.  M.A. Taggart, M. Carlisle, D.J. Pain, R. Williams, D. Osborn, A. Joyson and A.A. Meharg, Sci. Total Environ., 323, 137 (2004); doi:10.1016/j.scitotenv.2003.10.008.

32.  S. Fendorf, M.J. Eick, P. Grossl and D.L. Sparks, Environ. Sci. Technol., 31, 315 (1997); doi:10.1021/es950653t.

33.  R. Larios, R. Fernández-Martínez, R. Álvarez and I. Rucandio, Sci. Total Environ., 431, 426 (2012); doi:10.1016/j.scitotenv.2012.04.057.

34.  E.O. Mclean, in eds.: A.L. Page, Soil pH and lime requirement, In: Methods of Soil Analysis. Part II, Chemical and Microbiological Properties, American Society of Agronomy No. 9. Madison, Wisconsin, p. 199 (1982).

35.  A. Walkley and C.A. Black, Soil Sci., 37, 29 (1934); doi:10.1097/00010694-193401000-00003.

36.  D.W. Nelson and L.E. Sommers, in eds.: A.L. Page, R.H. Miller and D.R. Keeney, Organic Matter, In: Methods of Soil Analysis. Part II, Chemical and Microbiological Properties, American Society of Agronomy, No. 9, Madison, Wisconsin, p. 574 (1982).

37.  O.P. Mehra and M.L. Jackson, Clay Miner., 7, 317 (1958); doi:10.1346/CCMN.1958.0070122.

38.  A.A. Marin, A. López-Gonzálvez and C. Barbas, Anal. Chim. Acta, 442, 305 (2001); doi:10.1016/S0003-2670(01)01169-2.

39.  E.P. Welsh, J.G. Crook and R. Sanzolone, in ed.: B.F. Arbogast, Trace-Level Determination of Arsenic and Selenium Using Continuous-Flow Hydride Generation Atomic Absorption Spectro-photometry (HG-AAS), Quality assurance manual for the Branch of Geochemistry, U.S. Geological Survey, Denver, Colorado, p, 38 (1990).

40.  J.M. Piñeiro, C.M. Pérez, P.L. Mahı́a, S.M. Lorenzo, E.F. Fernández and D.P. Rodrı́guez, Talanta, 53, 871 (2001); doi:10.1016/S0039-9140(00)00578-6.

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.