Carbon Monoxide Conversion Using Functionalized Clay Material with Ptn+, H+ and (Ptn+/H+) Cations

Ahmed Belhakem1,*, Samia A. Ghomari2 and Fawzi Taleb1

1Laboratoire Synthèse Elaboration et Applications des Matériaux Minéraux, F.S.E&I/U, Mostaganem, B.P 1001, 27000 Mostaganem, Algeria

2Laboratoire M.B.A.F.S/F.S.N.V/U. Mostaganem, B.P 1001, 27000 Mostaganem, Algeria

*Corresponding author: E-mail: ahmedbel39@hotmail.com; abelhakem65@yahoo.fr

Abstract

Sodium acetate intercalated halloysites, functionalized with Ptn+, H+ and (Ptn+/H+) cations, were used as catalysts in the carbon monoxide conversion reaction. Experiments were carried out at 3.5 103 torr, 523 K and H2/CO ratio (about 2) or (H2/CO = 67 %/33 % v/v). Platinum ionic species, their distribution and average size particle were determined by X-Ray absorption near edge structure (XANES) and titration of adsorbed H2 by O2 techniques, respectively. The obtained results showed that CO conversions were higher with (Ptn+/H+) than with H+ or Ptn+ cations used as catalysts. These results were in accordance with the fact that H+ and Ptn+ combination generates a higher level of acidity. The activation/deactivation process showed that catalysts could be easily regenerated after each reaction by heating at 250 °C for 5 h. For the present study, a higher selectivity toward light hydrocarbons (C1-C4) was noticed. The catalysts nature, structure and texture played a major role on the quality and quantity of the final products.

Keywords

Halloysite structure and texture, Platinum oxidation states, CO hydrogenation.

Reference (67)

1.      A. de Klerk, Green Chem., 9, 560 (2007); doi:10.1039/b614187k.

2.      C.-K. Lee, S.-S. Liu, L.-C. Juang, C.-C. Wang, K.-S. Lin and M.-D. Lyu, J. Hazard. Mater., 147, 995 (2007); doi:10.1016/j.jhazmat.2007.01.130.

3.      M. Alkan and M. Dogan, J. Colloid Interf. Sci., 243, 280 (2001); doi:10.1006/jcis.2001.7796.

4.      J.C.Y. Ng, W.H. Cheung and G. McKay, J. Colloid Interf. Sci., 255, 64 (2002); doi:10.1006/jcis.2002.8664.

5.      S. Rengaraj, Y. Kim, C.K. Joo and J. Yi, J. Colloid Interf. Sci., 273, 14 (2004); doi:10.1016/j.jcis.2004.01.007.

6.      M. Arias, C. Pérez-Novo, F. Osorio, E. López and B. Soto, J. Colloid Interf. Sci., 288, 21 (2005); doi:10.1016/j.jcis.2005.02.053.

7.      M. Seredych and T. Bandosz, J. Colloid Interf. Sci., 302, 379 (2006); doi:10.1016/j.jcis.2006.06.017.

8.      X. Gu and J.L. Evans, J. Colloid Interf. Sci., 307, 317 (2007); doi:10.1016/j.jcis.2006.11.022.

9.      K.G. Bhattacharyya and S.S. Gupta, Sep. Purif. Technol., 50, 388 (2006); doi:10.1016/j.seppur.2005.12.014.

10.  A. Li and J. Dai, Water Res., 40, 1951 (2006); doi:10.1016/j.watres.2006.03.008.

11.  J. Hizal and A.R. Apak, J. Colloid Interf. Sci., 295, 1 (2006); doi:10.1016/j.jcis.2005.08.005.

12.  M. Malandrino, O. Abollino, A. Giacomino, M. Aceto and E. Mentasti, J. Colloid Interf. Sci., 299, 537 (2006); doi:10.1016/j.jcis.2006.03.011.

13.  X. Liu, H. Zhang, Y. Yang and C. Ha, Chin. Sci. Bull., 50, 1320 (2005); doi:10.1360/982004-196.

14.  M.H.A. Rehim, A.M. Youssef and H.A. Essawy, Mater. Chem. Phys., 119, 546 (2010); doi:10.1016/j.matchemphys.2009.10.012.

15.  D. Sun, Y. Li, B. Zhang and X. Pan, Comp. Sci. Technol., 70, 981 (2010); doi:10.1016/j.compscitech.2010.02.016.

16.  X. Ni, Y. Tan, Y. Han and N. Tsubaki, Catal. Commun., 8, 1711 (2007); doi:10.1016/j.catcom.2007.01.023.

17.  W.-J. Wang, H.-Y. Lin and Y.-W. Chen, J. Porous Mater., 12, 5 (2005); doi:10.1007/s10934-005-5227-y.

18.  J. Panpranot, J.G. Goodwin Jr. and A. Sayari, J. Catal., 213, 78 (2003); doi:10.1016/S0021-9517(02)00042-8.

19.  A. Belhakem and A. Bengueddach, Turk. J. Chem., 30, 287 (2006).

20.  A. Corma and H. Garcıa, Chem. Rev., 103, 4307 (2003); doi:10.1021/cr030680z.

21.  Y. Ying-Min, F. Jin-Hua, Z. Yi-Ping and Z. Xiao-Ming, J. Fuel Chem. Energ., 34, 700 (2006); doi:10.1016/S1872-5813(07)60005-X.

22.  G. Ung, G.D. Frey, W.W. Schoeller and G. Bertrand, Angew. Chem., 50, 9759 (2011); doi:10.1002/anie.201105306.

23.  Y.T. Ohnishi, T. Matsunaga, Y. Nakao, H. Sato and S. Sakaki, J. Am. Chem. Soc., 127, 4021 (2005); doi:10.1021/ja043697n.

24.  R. Tanaka, M. Yamashita, L.W. Chung, K. Morokuma and K. Nozaki, Organometal.J. Am. Chem. Soc., 30, 6742 (2011); doi:10.1021/om2010172.

25.  S. Mellouk, A. Belhakem, K. Marouf-Khelifa, J. Schott and A. Khelifa, J. Colloid Interf. Sci., 360, 716 (2011); doi:10.1016/j.jcis.2011.05.001.

26.  Th. Becker, St. Hövel, M. Kunat, Ch. Boas, U. Burghaus and Ch. Wöll, Surf. Sci. Lett., 486, L502 (2001); doi:10.1016/S0039-6028(01)01120-7.

27.  J. Grunes, J. Zhu, M. Yang and G.A. Somorjai, Catal. Lett., 86, 157 (2002); doi:10.1023/A:1022628404888.

28.  J.P. You, J.H. Choi, S. Kim, X. Li, R.S. Williams and R. Ragan, Nano Lett., 6, 1858 (2006); doi:10.1021/nl060640l.

29.  M. Digne, P. Raybaud, P. Sautet, D. Guillaume and H. Toulhoat, J. Am. Chem. Soc., 130, 11030 (2008); doi:10.1021/ja8019593.

30.  M.K. Oudenhuijzen, J.A. Van Bokhoven, J.T. Miller, D.E. Ramaker and D.C. Koningsberger, J. Am. Chem. Soc., 127, 1530 (2005); doi:10.1021/ja045286c.

31.  É. Sıpos, G. Fogassy, A. Tungler, P.V. Samant and J.L. Figueiredo, J. Mol. Catal. Chem., 212, 245 (2004); doi:10.1016/j.molcata.2003.10.044.

32.  M. Garcia-Mota, B. Bridier, J. Perez-Ramirez and N. Lopez, J. Catal., 273, 92 (2010); doi:10.1016/j.jcat.2010.04.018.

33.  B. Bridier, M.A.G. Hevia, N. López and J. Pérez-Ramírez, J. Catal., 278, 167 (2011); doi:10.1016/j.jcat.2010.11.024.

34.  T. Ishihara, H. Iwakuni, K. Eguchi and H. Arai, Appl. Catal., 75, 225 (1991); doi:10.1016/S0166-9834(00)83133-4.

35.  R. Van Hardeveld and F. Hartog, Surf. Sci., 15, 189 (1969); doi:10.1016/0039-6028(69)90148-4.

36.  M.C. Ribeiro, G. Jacobs, R. Pendyala, B.H. Davis, D.C. Cronauer, A.J. Kropf and C.L. Marshall, J. Phys. Chem. C, 115, 4783 (2011); doi:10.1021/jp111728h.

37.  W. Yu, B. Wu, J. Xu, Z. Tao, H. Xiang and Y. Li, Catal. Lett., 125, 116 (2008); doi:10.1007/s10562-008-9524-3.

38.  A. Szegedi, M. Popova, V. Mavrodinova and C. Minchev, Appl. Catal. A, 338, 44 (2008); doi:10.1016/j.apcata.2007.12.017.

39.  G.A. Somorjai, A.M. Contreras, M. Montano and R.M. Rioux, Proc. Natl. Acad. Sci. USA, 103, 10577 (2006); doi:10.1073/pnas.0507691103.

40.  M. Cao, K. Miyabayashi, Z. Shen, K. Ebitani and M. Miyake, J. Nanopart. Res., 13, 5147 (2011); doi:10.1007/s11051-011-0497-6.

41.  G.A. Somorjai and J.Y. Park, Surf. Sci., 603, 1293 (2009); doi:10.1016/j.susc.2008.08.030.

42.  A. Grirrane, A. Corma and H. Garcia, Chem. Eur. J., 17, 2467 (2011); doi:10.1002/chem.201002777.

43.  G. Wang, X. Wang, J. Liu and X. Sun, Chem. Eur. J, 18, 5361 (2012); doi:10.1002/chem.201101410.

44.  F.G. Cirujano, F.X. Llabrés, I. Xamena and A. Corma, Dalton Trans., 41, 4249 (2012); doi:10.1039/c2dt12480g.

45.  N.A. Saidina and D.D. Anggoro, J. Nat. Gas Chem., 11, 79 (2002).

46.  W.E. Farneth and R.J. Gorte, Chem. Rev., 95, 615 (1995); doi:10.1021/cr00035a007.

47.  J. Zhuang, D. Ma, Z. Yan, X. Liu, X. Han, X. Bao, Y. Zhang, X. Guo and X. Wang, Appl. Catal. A, 258, 1(2004).

48.  J.F. Haw, Phys. Chem. Chem. Phys., 4, 5431 (2002); doi:10.1039/b206483a.

49.  S. Garroni, C. Milanese, A. Girella, A. Marini, G. Mulas, E. Menéndez, C. Pistidda, M. Dornheim, S. Suriñach and M.D. Baró, Int. J. Hydrogen Energy, 35, 5434 (2010); doi:10.1016/j.ijhydene.2010.03.004.

50.  Y. Zhao, A. Mpela, D.I. Enache, S.H. Taylor, D. Hildebrandt, D. Glasser, G.J. Hutchings and M.S. Scurrell, Prepr. A.C.S. Div. Petr. Chem., 50, 206 (2005).

51.  G.X. Qi, J.H. Fei, X.M. Zheng and Z.Y. Hou, React. Kinet. Catal. Lett., 73, 245 (2001); doi:10.1023/A:1014194804329.

52.  M. Johns, P. Landon, T. Alderson and G.J. Hutchings, Chem. Commun., 23, 2454 (2001); doi:10.1039/b108353h.

53.  M. Xiang, J. Zou, Q. Li and X. She, J. Nat. Gas Chem., 19, 468 (2010); doi:10.1016/S1003-9953(09)60113-4.

54.  K. Jalama, N.J. Coville, D. Hildebrandt, D. Glasser, L.L. Jewell, J.A. Anderson, S.H. Taylor, D. Enache and G.J. Hutchings, Top. Catal., 44, 129 (2007); doi:10.1007/s11244-007-0286-8.

55.  M. Johns, P. Collier, M.S. Spencer, A. Alderson and G.J. Hutchings, Catal. Lett., 90, 187 (2003); doi:10.1023/B:CATL.0000004117.03422.2b.

56.  T. Sakakura, J.-C. Choi and H. Yasuda, Chem. Rev., 107, 2365 (2007); doi:10.1021/cr068357u.

57.  M.P. Rohde, D. Unruh and G. Schaub, Catal. Today, 106, 143 (2005); doi:10.1016/j.cattod.2005.07.124.

58.  B. Enderle and B. Gates, J. Mol. Catal. Chem., 204-205, 473 (2003); doi:10.1016/S1381-1169(03)00329-7.

59.  C.E. Hédoire, C. Louis, A. Davidson, M. Breysse, F. Maugé and M. Vrinat, J. Catal., 220, 433 (2003); doi:10.1016/S0021-9517(03)00308-7.

60.  H. Yang, H. Chen, J. Chen, O. Omotoso and Z. Ring, J. Catal., 243, 36 (2006); doi:10.1016/j.jcat.2006.06.026.

61.  B. Pawelec, P. Castaño, J.M. Arandes, J. Bilbao, S. Thomas, M.A. Peña and J.L.G. Fierro, Appl. Catal. A, 317, 20 (2007); doi:10.1016/j.apcata.2006.09.035.

62.  M.V. Cagnoli, N.G. Gallegos, A.M. Alvarez, J.F. Bengoa, A.A. Yeramián, M. Schmal and S.G. Marchetti, Appl. Catal. A, 230, 169 (2002); doi:10.1016/S0926-860X(01)01012-2.

63.  N.G. Gallegos, A.M. Alvarez, M.V. Cagnoli, J.F. Bengoa, L.A. Cano, R.C. Mercader and S.G. Marchetti, Catal. Today, 107-108, 355 (2005); doi:10.1016/j.cattod.2005.07.027.

64.  D. Yin, W. Li, W. Yang, H. Xiang, Y. Sun, B. Zhong and S. Peng, Micropor. Mesopor. Mater., 47, 15 (2001); doi:10.1016/S1387-1811(01)00322-5.

65.  C. Jones, S.H. Taylor, A. Burrows, M.J. Crudace, C.J. Kiely and G.J. Hutchings, Chem. Commun., 14, 1707 (2008); doi:10.1039/b800052m.

66.  Á. Mastalir, B. Rác, Z. Király and Á. Molnár, J. Mol. Catal. Chem., 264, 170 (2007); doi:10.1016/j.molcata.2006.09.021.

67.  G. Crépeau, V. Montouillout, A. Vimont, L. Mariey, T. Cseri and F. Maugé, J. Phys. Chem. B, 110, 15172 (2006); doi:10.1021/jp062252d.

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.