Use of Silica Fume as Low-Cost Absorbent Material for Nickel Removal from Aqueous Solutions

Ekrem Kalkan1,*, Hayrunnisa Nadaroglu2 and Neslihan Celebi2

1Department of Geological Engineering, Oltu Earth Science Faculty, Ataturk University, 2400 Oltu, Erzurum, Turkey

2Erzurum Vocational Training School, Ataturk University, 2570 Erzurum, Turkey

*Corresponding author: Fax: +90 442 8163332; Tel: +90 442 8166266; E-mail: ekalkan@atauni.edu.tr

Abstract

The potential of economically low-cost cellulose containing waste materials like silica fume assessed for nickel adsorption from aqueous solutions. In this study, the potential use of silica fume in the remediation of polluted heavy metal water to remove nickel ions is presented. The effects of contact time, initial nickel concentration, pH, temperature, adsorbent dosage on the uptake of nickel were studied in batch process. The experimental investigation results show that activated silica fume has a high level of adsorption capacity for nickel ion. The adsorption data was correlated with the Langmuir and Freundlich isotherm models. It was found that the Langmuir and Freundlich isotherms fitted well to the data. Consequently, it is concluded that nickel is considerably adsorbed on silica fume and silica fume can be successfully used for the removal of the nickel ions from the aqueous solutions with heavy metals.

Keywords

Waste water, Silica fume, Aqueous solution, Nickel, Adsorption isotherms, Removal.

Reference (72)

1.      V.K. Gupta and A. Rastogi, J. Hazard. Mater., 154, 347 (2008); doi:10.1016/j.jhazmat.2007.10.032.

2.      S. Kalyani, P. Srinivasa Rao and A. Krishnaiah, Chemosphere, 57, 1225 (2004); doi:10.1016/j.chemosphere.2004.08.057.

3.      D. Bozic, V. Stankovic, M. Gorgievski, G. Bogdanovic and R. Kovacevic, J. Hazard. Mater., 171, 684 (2009); doi:10.1016/j.jhazmat.2009.06.055.

4.      Y. Bulut and Z. Tez, J. Environ. Sci. (China), 19, 160 (2007); doi:10.1016/S1001-0742(07)60026-6.

5.      F.V. Pereira, L.V.A. Gurgel and L.F. Gil, J. Hazard. Mater., 176, 856 (2010); doi:10.1016/j.jhazmat.2009.11.115.

6.      A.B. Albadarin, A.H. Al-Muhtaseb, N.A. Al-laqtah, G.M. Walker, S.J. Allen and M.N.M. Ahmad, Chem. Eng. J., 169, 20 (2011); doi:10.1016/j.cej.2011.02.044.

7.      P.M. Choksi and V.Y. Joshi, Desalination, 208, 216 (2007); doi:10.1016/j.desal.2006.04.081.

8.      E. Kalkan, H. Nadaroglu and N. Demir, Desalination Water Treat., 44, 180 (2012); doi:10.1080/19443994.2012.691704.

9.      X. Huang, M. Sillanpëë, B. Dou and E.T. Gjessing, Environ. Pollut., 156, 270 (2008); doi:10.1016/j.envpol.2008.02.014.

10.  T. Aman, A.A. Kazi, M.U. Sabri and Q. Bano, Colloid Surf. B, 63, 116 (2008); doi:10.1016/j.colsurfb.2007.11.013.

11.  Y. Jiang, H. Pang and B. Liao, J. Hazard. Mater., 164, 1 (2009); doi:10.1016/j.jhazmat.2008.07.107.

12.  H. Cho, D. Oh and K. Kim, J. Hazard. Mater., 127, 187 (2005); doi:10.1016/j.jhazmat.2005.07.019.

13.  P.X. Sheng, Y.P. Ting, J.P. Chen and L. Hong, J. Colloid Interf. Sci., 275, 131 (2004); doi:10.1016/j.jcis.2004.01.036.

14.  V. Padmavathy, P. Vasudevan and S.C. Dhingra, Process Biochem., 38, 1389 (2003); doi:10.1016/S0032-9592(02)00168-1.

15.  H. Hasar, J. Hazard. Mater., 97, 49 (2003); doi:10.1016/S0304-3894(02)00237-6.

16.  I. Villaescusa, N. Fiol, M. Martinez, N. Miralles, J. Poch and J. Serarols, Water Res., 38, 992 (2004); doi:10.1016/j.watres.2003.10.040.

17.  Z. Aksu, Process Biochem., 38, 89 (2002); doi:10.1016/S0032-9592(02)00051-1.

18.  E. Malkoc and Y. Nuhoglu, J. Hazard. Mater., 127, 120 (2005); doi:10.1016/j.jhazmat.2005.06.030.

19.  B. Tansel, Recent Pat. Chem. Eng., 1, 17 (2008); doi:10.2174/2211334710801010017.

20.  T.A. Kurniawan, G.Y.S. Chan, W.H. Lo and S. Babel, Sci. Total Environ., 366, 409 (2006); doi:10.1016/j.scitotenv.2005.10.001.

21.  A.F. Bertocchi, M. Ghiani, R. Peretti and A. Zucca, J. Hazard. Mater., 134, 112 (2006); doi:10.1016/j.jhazmat.2005.10.043.

22.  A. Bhatnagar, A.K. Jain, A.K. Minocha and S. Singh, Sep. Sci. Technol., 41, 1881 (2006); doi:10.1080/01496390600725828.

23.  S.V. Dimitrova and D.R. Mehanjiev, Water Res., 34, 1957 (2000); doi:10.1016/S0043-1354(99)00328-0.

24.  E. Kalkan, H. Nadaroglu, N. Dikbaş, E. Taşgin, N. Çelebi, Pol. J. Environ. Stud., 22, 105 (2013).

25.  R.D. Hooton, ACI Mater. J., 90, 143 (1993).

26.  C.D. Atis, F. Ozcan, A. Kilic, O. Karahan, C. Bilim and M.H. Severcan, Build. Environ., 40, 1678 (2005); doi:10.1016/j.buildenv.2004.12.005.

27.  A.H. Toutanji and Z. Bayasi, Cement Concr. Res., 29, 497 (1999); doi:10.1016/S0008-8846(98)00197-5.

28.  E. Kalkan, Eng. Geol., 87, 220 (2006); doi:10.1016/j.enggeo.2006.07.002.

29.  E. Kalkan, Appl. Clay Sci., 52, 345 (2011); doi:10.1016/j.clay.2011.03.014.

30.  E. Kalkan and S. Akbulut, Eng. Geol., 73, 145 (2004); doi:10.1016/j.enggeo.2004.01.001.

31.  E. Kalkan, Appl. Clay Sci., 43, 296 (2009); doi:10.1016/j.clay.2008.09.002.

32.  E. Kalkan, Cold Reg. Sci. Technol., 58, 130 (2009); doi:10.1016/j.coldregions.2009.03.011.

33.  E. Kalkan, Appl. Clay Sci., 80-81, 117 (2013); doi:10.1016/j.clay.2013.06.014.

34.  B.D. Ozturk, H. Filik, E. Tutem and R. Apak, Talanta, 53, 263 (2000); doi:10.1016/S0039-9140(00)00382-9.

35.  J.D. Seader and E.J. Henly, Separation Process Principles, John Wiley & Sons Inc. (2006).

36.  R. Saravanane, T. Sundararajan and S. Sivamurthyreddy, Indian J. Environ. Health, 44, 78 (2002).

37.  M. Bansal, D. Singh, V.K. Garg and P. Rose, World Acad. Sci. Eng. Technol., 51, 431 (2009).

38.  N. Celebi, H. Nadaroglu and E. Kalkan, Fresenius Environ. Bull., 21, 1982 (2012).

39.  V.K. Gupta, C.K. Jain, I. Ali, M. Sharma and V.K. Saini, Water Res., 37, 4038 (2003); doi:10.1016/S0043-1354(03)00292-6.

40.  P.S. Kumar, K. Ramakrishnan and R. Gayathri, J. Eng. Sci. Technol., 5, 232 (2010).

41.  H.A. Elliott and C.P. Huang, Water Res., 15, 849 (1981); doi:10.1016/0043-1354(81)90139-1.

42.  C.H. Weng and C.P. Huang, Proceedings of the 1990 Environmental Engineering Speciality Conference, ASCE, New York, NY, U.S.A., p. 923 (1990).

43.  B. Bayat, J. Hazard. Mater., 95, 251 (2002); doi:10.1016/S0304-3894(02)00140-1.

44.  M. Imamoglu and O. Tekir, Desalination, 228, 108 (2008); doi:10.1016/j.desal.2007.08.011.

45.  S.S. Shukla, L.J. Yu, K.L. Dorris and A. Shukla, J. Hazard. Mater., 121, 243 (2005); doi:10.1016/j.jhazmat.2004.11.025.

46.  A. Benhammou, A. Yaacoubi, L. Nibou and B. Tanouti, J. Colloid Interf. Sci., 282, 320 (2005); doi:10.1016/j.jcis.2004.08.168.

47.  M.M. Rashad, M.M. Hessien, E.A. Abdel-Aal, K. El-Barawy and R.K. Singh, Powder Technol., 205, 149 (2011); doi:10.1016/j.powtec.2010.09.005.

48.  Z. Elouear, J. Bouzid, N. Boujelben, M. Feki, F. Jamoussi and A. Montiel, J. Hazard. Mater., 156, 412 (2008); doi:10.1016/j.jhazmat.2007.12.036.

49.  J. Das, B.S. Patra, N. Baliarsingh and K.M. Parida, Appl. Clay Sci., 32, 252 (2006); doi:10.1016/j.clay.2006.02.005.

50.  S. Cay, A. Uyanik and A. Ozasik, Sep. Purif. Technol., 38, 273 (2004); doi:10.1016/j.seppur.2003.12.003.

51.  B.M.W.P.K. Amarasinghe and R.A. Williams, Chem. Eng. J., 132, 299 (2007); doi:10.1016/j.cej.2007.01.016.

52.  J. Nouri, I. Ghodbane, O. Hamdaoui and M. Chiha, J. Hazard. Mater., 149, 115 (2007); doi:10.1016/j.jhazmat.2007.03.055.

53.  H. Nadaroglu, E. Kalkan and N. Demir, Desalination, 251, 90 (2010); doi:10.1016/j.desal.2009.09.138.

54.  V. Bansal, A.P. O’Mullane and S.K. Bhargava, Electrochem. Commun., 11, 1639 (2009); doi:10.1016/j.elecom.2009.06.018.

55.  R.E. Treybal, Mass Transfer Operations, McGraw Hill, New York, p. 447 (1980).

56.  V.K. Gupta and I. Ali, Sep. Purif. Technol., 18, 131 (2000); doi:10.1016/S1383-5866(99)00058-1.

57.  R. Shawabkeh, A. Al-Harahsheh and A. Al-Otoom, Sep. Purif. Technol., 40, 251 (2004); doi:10.1016/j.seppur.2004.03.006.

58.  M. Minamisawa, H. Minamisawa, S. Yoshida and N. Takai, J. Agric. Food Chem., 52, 5606 (2004); doi:10.1021/jf0496402.

59.  S.K. Srivastava, G. Bhattacharjee, R. Tyagi, N. Pant and N. Pal, Environ. Technol. Lett., 9, 1173 (1988); doi:10.1080/09593338809384679.

60.  M. Ajmal, A. Hussain Khan, S. Ahmad and A. Ahmad, Water Res., 32, 3085 (1998); doi:10.1016/S0043-1354(98)00067-0.

61.  F.P. Padilha, F.P. de França and A.C.A. da Costa, Bioresour. Technol., 96, 1511 (2005); doi:10.1016/j.biortech.2004.11.009.

62.  M. Rao, A.V. Parwate and A.G. Bhole, Waste Manage., 22, 821 (2002); doi:10.1016/S0956-053X(02)00011-9.

63.  V. Padmavathy, P. Vasudevan and S.C. Dhingra, Process Biochem., 38, 1389 (2003); doi:10.1016/S0032-9592(02)00168-1.

64.  F.A.A. Al-Rub, M. Kandah and N. Al-Dabaybeh, Eng. Life Sci., 2, 111 (2002); doi:10.1002/1618-2863(200204)2:4<111::AID-ELSC111>3.0.CO;2-Q.

65.  Y.S. Ho, D.A. John Wase and C.F. Forster, Water Res., 29, 1327 (1995); doi:10.1016/0043-1354(94)00236-Z.

66.  R. Gundogan, B. Acemioglu and M.H. Alma, J. Colloid Interf. Sci., 269, 303 (2004); doi:10.1016/S0021-9797(03)00762-8.

67.  E.G. Pradas, M.V. Sanchez, E.C. Cruz, M.S. Viciana and M.E. Perez, J. Chem. Technol. Biotechnol., 59, 289 (1994); doi:10.1002/jctb.280590312.

68.  G. McKay, Use of Adsorbents for the Removal of Pollutants from Waste Water, CRC Press, Bocca Baton, FL (1985).

69.  M. Arami, N. Limaee and N. Mahmoodi, Chem. Eng. J., 139, 2 (2008); doi:10.1016/j.cej.2007.07.060.

70.  M.C.S. Reddy, V. Nirmala, C. Ashwini, Arab. J. Chem., (2013) doi:10.1016/j.arabjc.2013.09.029.

71.  Mahmoodi, R. Salehi, M. Arami and H. Bahrami, Desalination, 267, 64 (2011); doi:10.1016/j.desal.2010.09.007.

72.  H. Nadaroglu, N. Celebi, E. Kalkan and G. Tozsin, Jokull J., 63, 87 (2013).

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.