Innovation of Natural Product as Suppository Base

D. Ramya Devi*, K. Malarvizhi, M. Abinaya and B.N. Vedha Hari

Department of Pharmaceutical Technology, School of Chemical and Biotechnology, SASTRA University, Thanjavur-613 401, India

*Corresponding author: Fax: +91 4362 264120; Tel: +91 4362 264101/108 Extn: 116; E-mail:


The ideal properties of ghee paved the way for the development of natural product suppository using ghee as a suppository base. It has ability to decrease the low density lipoproteins cholesterol level in plasma, the capability of smoothening the skin and its lipophilic character facilitates better absorption. Suppositories administered via vaginal or rectal route melts at the body temperature for the targeted delivery. Sulphanilamide, an antimicrobial drug is used as the model drug. The objective of the present work is to study the role of ghee as a base in addition with bees wax at varying composition like 1:1, 2:1 and 1:2. The prepared suppositories are evaluated for their physical parameters. The influence of polymer like hydroxy propyl methyl cellulose (5, 10 and 15 %) on drug release is also studied. The results proved that increase in ghee ratio enhances the drug release whereas increased ratio of bees wax showed a decline in release.


Sulphanilamide, Bees wax, Cow ghee, Hydroxy propyl methyl cellulose.

Reference (31)

1.      J.D. Mulder, The Complete Ayurvedic Cookbook. Acidify and Live-An Ayurvedic Alkaline Diet. Eumundi Medicine Man, The Ayurvedic Herb Shop, Palmswood Queensland, Australia, edn 4 (2011).


2.      Swamy Sada Shiva Tirtha, The Ayurvedic Encyclopedia, Natural Secrets to Healing, Prevention and Longevity, Ayurveda Holistic Centre Press, NY, USA, p. 145 (2005).


3.      D.M. Sakarkar, Ph. D. Thesis, Studies on Ancient Medicinal Formulation Excipient with Special Reference to Panchgavya (Ghee), Nagpur University, Nagpur, India (2001).


4.      L.C. Mishra, “Scientific Basis for Ayurvedic Therapies”, CRC Press, Boca Raton, 45 (2004).


5.      Remington, The Science and Practice of Pharmacy, Lippincott Williams and Wilkins, edn 21, p. 883 (2005).


6.      B. Heil, Patent Application 20120237489 (2012)..


7.      European Pharmacopoeia, Sulfanilamide, Allée Kastner, CS 30026, F67081 Strasbourg, France, p. 2513 (2005).


8.      H.A. Lieberman, M.M. Riger and G.S. Banker, Pharmaceutical Dosage Forms-Disperse Systems, Mercel Dekker Inc. New York, vol. II, p. 533 (1998).


9.      L.I. Coben and H.A. Lieberman, The Theory and Practice of Industrial Pharmacy, Lea and Febiger: Philadelphia, edn 3, p. 564 (1986).


10.  D.M. Biyani, P.R.P. Verma, C.A. Doifode and A.K. Dorle, World J. Pharm. Pharm. Sci., 1, 1180 (2012).


11.  C.A. Howard and J.P. Shelly, Pharmaceutical Calculations: The Pharmacist's Handbook, Lippincott Willams & Wilkins, p. 101 (2004).


12.  S.J. Carter, Cooper and Gunn's: Dispensing for Pharmaceutical Students, CBS Publishers and Distributers, edn 12, p. 238 (2008).


13.  M.O. Ilomuanya, N.D. Ifudu, J. Odulaja and C. Igwilo, J. Chem. Pharm. Res., 4, 3280 (2012).


14.  H. Mollel, Ph. D. Thesis, Development and Assessment of Azithromycin Paediatric Suppository Formulations, Rhodes University, Grahamstown, South Africa (2006).


15.  S. Ranjita and S. Kamalinder, Malay. J. Pharm. Sci., 8, 57 (2010).


16.  D. Suvakanta, N.M. Padala, N. Lilakanta and C. Prasanta, Acta Pol. Pharm. Drug Res., 67, 217 (2010).


17.  D.A. Skoog and M.D. West, Principles of Instrumental Analysis, Saunders College, Philadelphia, edn 2, p. 655 (1980).


18.  Y.R. Dhurvey, P.S. Kawtikwar and D.M. Sakarkar, Int. J. Chem. Tech. Res., 4, 185 (2012).


19.  T.H. Jauw, H.W. Frijlink, F. Moolenaar and P. Meijlink, US Patent 5436009 (1995).


20.  Indian Pharmacopoeia (Vol I & II), Govt. of India, Ministry of Health and Family Welfare, Dept. of Health (2007).


21.  M.N. Murata, K.K. Harumi, N.S. Takashi, K.N. Shuichi and I.Y. Akira, US Patent 5500221 (1996).


22.  L.R. Zawar and G.S. Bhandari, J. Appl. Pharm. Sci., 2, 186 (2012).


23.  E. Bergogne-Berezin, J. Antimicrob. Chemother., 43, 177 (1999); doi:10.1093/jac/43.2.177.


24.  S. Gautam and S. Mahaveer, Int. J. Pharm. Stud. Res., 2, 1 (2011).


25.  J. Coates, in ed.: R.A. Meyers, Interpretation of Infrared Spectra: A Practical Approach, Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd., Chichester, p. 10815 (2000).


26.  P.L. Donald, M.L. Gary, S.K. George and G.E. Randall, Brooks/Cole Laboratory Series for Organic Chemistry: A Small Scale Approach to Organic Laboratory Techniques, Brooks/Cole Cengage Learning, ISBN 13: 978-1-4390-4932-7, ISBN 10: 1-4390-4932-7, p. 369 (2011).


27.  V.Y. Birshtein and V.M. Tul’chinskii, Chem. Nat. Compd., 13, 232 (1977); doi:10.1007/BF00563956.


28.  S. Subhashree, K.C. Chandra, K.B. Pradipta and C.M. Subash, Int. J. Pharm. Sci. Rev. Res., 11, 122 (2011).


29.  S. Toscani, A. Dzyabchenko, V. Agafonov, J. Dugue and R. Ceolin, Pharm. Res., 13, 151 (1996); doi:10.1023/A:1016058123659.


30.  H.O. Lin and J.K. Guillory, J. Pharm. Sci., 59, 972 (1970); doi:10.1002/jps.2600590711.


31.  J.S. Alencar, S. Pietri, M. Culcasi, C. Orneto, P. Piccerelle, J.P. Reynier, H. Portugal, A. Nicolay and J. Kaloustian, J. Therm. Anal. Calorim., 98, 133 (2009); doi:10.1007/s10973-009-0102-8.

   View Article PDF File Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.